PART B: STRUCTURED PROJECT ADITYA MITTAL

Pre- and Post-Quantum Elliptic Curve Cryptography

March 2025

Mathematical Institute
University of Oxford

Contents

(1__Introduction| 3
[1.1 Crediting and Sources| e e e e e 3
[2 Cryptography Preliminaries| 3
[2.1 _Diffie-Hellman and the Key Distribution Problem|. 3
2.2 and Security Assumptions| e e 4
2.3 roup »izes and Parameter Selection|o 7

[3_ Classic Elliptic Curve Cryptography| 7

3.1 Mathematical Preliminaries 7
3.2 Elliptic Curves and the Group Law| 8
3.3 Group Structure and Hasse’s Bound| 10
3.4 The Nechaev-Shoup Theorem and Confidence in ECDLP} 16
3.5 Security and Implementation Analysis| oo oo o 16
BET Anomalons CUIVES - . « « « o o oottt e e e e e e e 16

3-5.2 Supersingular Curves|. 17

8.5.3 Invalid Point Attacks. 17

13.5.4 Comparison to Other Classic Cryptographic Schemes|. 17

|4 Introduction to Quantum Computing| 18
4.1 What 1s Classical Computing?|. e 18
4.2 Key Differences of Quantum and Classical Computing] 18
4.2.1 Brief Aside on Qubits (Mathematical Approach)| 19

4.2.2 So What? Quantum Parallelism is What| 20

[E37A Note On Quantum Time Complexity and SECUTIEY] . + « « « « v v v v v v e e oo 21
4.4 TIs This Viable?d o e 22

|5 Quantum Computing Threat| 22
5.1 or's Algorithm| L 22
b.1.1 Why Do We Need Quantum At AIl?| 22

.2 The Quantum Fourier Transform| o 23
B3 Phase Estimationl 24
[5.3.1 Phase Estimation Accuracy| 25

4 Quantum Order-Finding] o o 0 vt o 26
b.5 Quantum DLP and the Hidden Subgroup Problem| 27
P.-5.1 QFT on Finite Abelian Groups| o 28

0.6 Time Complexity Analysis|. o 29
[6.7 Tmpact on Classical ECC and Immediate TImelne o v vt v v v e e 30

[6 Post-Quantum Elliptic-Curve Cryptography| 31
6.1 Isogeny Graphs| e 31
6.1.1 Additional Mathematical Background| 31

6.1.2 Supersingular EIliptic Curves| oot i it 33

[62 SIDH/SIKE Protocols| 36
[6.3 Unfortunate Recent Developments| i 38

[7 Other Post-Quantum Solutions and Further Directions| 38
7.1 Lattice-Based Cryptography|. 38
7.2 Hash-Based Cryptography| 38
[7.3 Efficiency and Security Comparisons| 39
[8_Conclusion 39

APP Q 43
-Hellman Visualizationl 43

110.2 Understanding the Pohlig-Hellman Algorithm| 43
[10.3 Some Notes on DLP Algorithms| o o 44
10.3.1 Baby-Step Glant-Step: A General DLP Algorithm| 44
10.3.2 Using Z,, and the Weakness of Factorization| 45
10.3.3 Tndex Calculus Affackl o . 46
[10.3.4 Analysis for Index Calculus| oo 000 46
10.3.5 Homogencous Coordinates for BCDLP] v v v i i e e e e 47

110.4 Understanding The Nechaev-Shoup Theorem| 47
110.5 Proof of Endomorphism Standard Form| o0 o000 49
110.6 Some Useful Algorithms| 49
10.6.1 Extended Euclidean Algorithm| 49
10.6.2 Fast Exponent and Double-and-Add] o 50
[[0.7 Existence of Finite Fields 51
110.8 Some Comments on Shor’s Algorithm| 0 L. 54
[10.8.1 The Controlled-U Gate in Quantum Phase Fistimation| 54
10.8.2 A Comment on the Success of Shor’s Algorithm|. 54
10.8.3 Deriving the Fourier Basis for Hidden Subgroups| 54
110.8.4 Another Approach to the Generic HSP Algorithm| 55

1 Introduction

The Information Age is one, if not the most rapid period of human innovation. At the center of it all is our
modern communication. Science and culture now transcends geography and anything and everything that
can be encoded as a signal can be sent wherever you want. Designing such technology to align with our values
and wishes, however, is no easy task. In particular, secrecy poses a fair problem. There is no obvious analogy
for “talking quietly” or “locking up” a message to be secure in the same way talking or physical/written
communication intuitively lends. As such, information theory and cryptography have risen to prominence
to ensure we can leverage our amazing new capabilities reassured with nothing to worry about. However,
just as computers have provided us with so much, quantum computers seem to be the next big step for our
progress. But the new power of such mystical machines also threatens some of the hard work we have done
in cryptography over the last century.

The goal of this paper is to build from scratch an understanding of problems in cryptography, a relevant
modern approach with elliptic curves and group theory, a potential concern with quantum computers, and
potential solutions in the face of this quantum threat. We take a computational hands-on approach to the
results to concretize most of the abstract algebra, for while it may explain why we should use something, it
usually does not explain how. With much to cover, we try to maintain the core results and leave the rest to
intuitive understandings and some of the rigor in the textbooks, with a special focus on the quantum theory
and algorithms. When relevant, we appeal to the Appendix if proof strategies are isolated or unenlightening
for later reference. Common and useful primitive algorithms discussed are also found in the Appendix.

1.1 Crediting and Sources

The way this is organized is that unless a section, result, or comment is cited, it is all of my own understanding
and original process. Some sections like 3.2 draw heavily from only a couple specific references, and as such
are credited at the beginning of the section as opposed to all throughout. While many results are typical
and can be found in standard literature and are not necessarily my own derived work, all the motivations,
intuitions, explanations, and proof sketches of such are my own (and such key words will be used to draw
attention to these individual contributions).

2 Cryptography Preliminaries

Imagine two people, Alice and Bob, want to share a secret message m with each other over a public channel,
like a radio frequency. Alice does not want to just send m freely, since someone might be listening in. So
instead, she uses a function that takes a private key as a parameter to encrypt her message Er(m) = c.
This function naturally needs to comes with an inverse Dy (c) = m to recover the message. Now she can send
the encryption ¢ to Bob without worry that someone might figure out what they are talking about. But now
we are back at square one: how does Bob decrypt and recover the original message m = Dy(c)? Bob needs
the key k, but Alice cannot send k over the channel since then a malicious eavesdropper could recover m.
Alice could try encrypting & similar to m with ¢; = Ey/ (k), but then we have the same issue with needing
to communicate the new private key k’. For Alice and Bob to be able to send secret messages to each other,
they already need to be able to send secrets to begin with. They have a circular problem.

2.1 Diffie-Hellman and the Key Distribution Problem

In practice, this is where some additional step beyond the scope of the encryption method would have to take
place. Alice and Bob could physically meet up, find a trusted third-party courier, or any other known, secure
method to get the key to each other and importantly only each other. But once the private key is shared,
they get the convenience of using insecure, public communication channels openly using their encryption
methods.

In 1976, Whitfield Diffie and Martin Hellman [22] revolutionized this process, finding a method where
Alice and Bob can together create a shared secret they can use for anything (in particular, creating a private
key). What makes it especially incredible is that it only uses the public channel for them to make this secret.

Diffie-Hellman Key Exchange: Alice and Bob will together derive a shared secret piece of information,
despite only communicating over public/insecure channels. We will specify the algorithm and analyze the
security afterwards.

1. Alice and Bob agree on a value of n, and a generator g of a finite cyclic group G = C,, of order n.

2. Alice chooses a random secret integer 1 < a < m, and computes A = g*. Similarly, Bob chooses a
random secret integer 1 < b < n, and computes B = g°.

3. Alice sends the value of A to Bob, and Bob sends the value of B to Alice.
4. Alice computes B® = (¢*)?, while Bob computes A® = (g)°.
5. Alice and Bob have come to the shared value (¢°)* = g% = (g%)°.

(A graphic of the above is in the Appendix) Together, they were able to come to a shared random element
in g®® € G without ever revealing it. The key lies in the associativity of exponents for group elements. Note
the use of a cyclic group and its generator: if we use a non-generator of G, g*® can no longer be any arbitrary
element of G but rather only an element of the smaller subgroup (g), making a brute-force search of the
shared secret easier. To be clear, here is what was and was not revealed in the public channel:

e Publicly known: G, ¢, n, g%, ¢°
e Privately known: a, b, g% (shared)

So Alice and Bob now have this shared element that they can use for whatever they require secrecy for,
including their encryption keys. A common choice of cyclic group is using a subgroup of the multiplicative
group (Z/pZ)* for choice of prime p due to the efficiency of calculating modular exponents.

Note that this really is only practically useful for key distribution and generation. Alice and Bob inde-
pendently think of a and b and cannot share these specific values with each other, so the shared value g®
cannot be controlled by just Alice or just Bob to send a message. If Alice instead tried sending a message
a as g, the fact we are working in the finite group C,, limits how many and what “messages” we can send.
Moreover, we don’t have a decryption protocol, so what makes it hard for an attacker to read a from g% will
be the same difficulty that Bob encounters when receiving g.

2.2 DLP and Security Assumptions

We are not quite in the clear yet. Crucially, we still need to show that if a malicious eavesdropper has all
the public information {g,n, g%, "}, they cannot also (feasibly) discover g¢®. This is the Computational
Diffie-Hellman Problem (CDH), and this is what we need to show that is hard to solve. If it is easy,
then Alice and Bob still have the same problem of establishing secure secrets. We formalize this with a game
against an attacker A:

The CDH Experiment CDHExp 4 ;(n):
1. Pick a cyclic group G of order n with generator g. Pick two elements h; = g** and hy = g*2.
2. Ais given G,n, g, hy, hs and outputs an element h.
3. If h = ghk2 | we let CDHExp 4 ;(n) = 1. Else CDHExp 4 (n) = 0.

Definition 2.1 (Negligible function). A function is negligible if for every positive polynomial p(z), it is of
order O(1/p(z)).

The idea is that if an attack only succeeds with probability some negligible function f(n) where n is a
security parameter of our encryption protocol (i.e. key length), then the success rate decreases faster than
the increase in polynomial computing time of the attack; a not-tending-to-0 success probability would require
a non-polynomial amount of attacks.

Definition 2.2 (CDH Hardness). We say that the CDH problem is hard relative to G if for all probabilistic
polynomial-time adversaries A, there is a negligible function negl such that P(CDHExp 4 (n) = 1) < negl(n).

Remark 2.3 (Time Complexity). We simplify the nuance of time complexity for clarity. A polynomial time
algorithm is one that takes an asymptotic polynomial number of steps O(p(n)) where n is some parameter.
Here, n will often refer to a security parameter that ties to the strength of a protocol.

We consider polynomial time adversaries since those are efficient attacks; a non-polynomial time attack will
quickly become infeasible. We do not actually have a definitive proof that CDH is hard, but we have strong
heuristic evidence. As such, the CDH assumption states that there is a group for which CDH is hard. A
related problem is the discrete logarithm problem (DLP).

Definition 2.4 (Discrete logarithm). If G is a finite group, b is an element of G, and y = b*, then k = log, y
is the discrete logarithm of y with respect to b.

The DLP is to find & given b and y, and this is thought to be hard as well (we can formalize hardness in
a similar experiment). Clearly, if DLP is easy, then CDH is also easy: just find a (or b) from {g,¢%} and
compute (g?)®. Because of the reduction of CDH to DLP, we often aim to work in groups where we believe
DLP to be hard (formalized with a similar experiment as above; in fact, although they did not specify it
formally, this was the original assumption Diffie and Hellman made when introducing their key-exchange
[22]). The converse with solving CDH implies solving DLP is not known [32], but there are special cases
where they are equivalent [37].

The CDH and DLP assumptions all assume existence of groups where solving their respective problem
is difficult, but that assumption does not really matter if we cannot point to a specific group we can use (as
the Diffie-Hellman Key Exchange uses finite cyclic groups, those will be our primary focus). Because solving
DLP implies solving the former, much work has gone into DLP specifically to give at least a “bottom-line”
difficulty for all these problems. We need to take care in this since there are clear cases where DLP is quite
easy to solve.

Example 2.5. Consider the additive group (Z1s5,+). Then DLP reduces to finding multiplicative inverses
modulo 15. We can quickly solve log, 7 = 13 since (471)(7) = 13 mod 15. In general, DLP can be solved
efficiently for (Z,,, +) with the Euclidean algorithm in O((logn)?) (see the Appendix for a sample implemen-
tation).

Before looking for a specific group G, we can already make some general observations about the group
structure we want for DLP to be hard. For one, G seems like it should be at least of prime power order due
to the Chinese Remainder Theorem (Section 9.5 [14]).

Theorem 2.6. Let G be a finite cyclic group of order |G| = p§* ---pi* = n with generator g, and p; are
prime. Set
ni =n/p, gi=g", ai =a", x; = logg,a;.

If x € Zy, is a solution to the simultaneous congruences x = x; mod pi*, then x = log, a.

Thus instead of needing to solve DLP in groups of general order n, we only have to solve them in groups
with prime power orders and use the Chinese Remainder Theorem to stitch together a solution. In fact, we
can further reduce solving DLP to solving DLP into just prime order subgroups.

Theorem 2.7. Let G be a finite cyclic group of order |G| = p® = n with generator g and p prime, and let
a € G be an arbitrary element. Then we can find x = log, a with e sub-DL problems in groups of order p.

The proofs are in the Appendix. They are not particularly enlightening, and rather only verify the
general strategy that pervades much of algebra. Combining the two theorems above give the Pohlig-
Hellman algorithm to find discrete logarithms. To complete the algorithm, we only now need a general
DLP solving algorithm. It has been shown that for any non-group specific algorithm, we can do this at best
in O(y/n) group operations [42][53] (see Section 3.4). See the Appendix for one such O(y/n) implementation
with the Baby-Step Giant-Step algorithm.

Remark 2.8. Note O(y/n) would seem to suggest we have found an efficient algorithm for solving DLP,
contradicting the need to make any assumption that DLP is hard; O(y/n) would suggest a polynomial time
algorithm. This is where we require some nuance in how we understand time complexity. The point of time
complexity is to understand how long an algorithm runs with respect to the size of the input we store in
computer memory. Graph algorithms may measure size with number of vertices; sorting algorithms may
measure size with number of elements to sort; here our input is just a number. Computers store numbers
as bits, so we measure the size of a number by how many bits we need to represent it. Thus we want our
algorithms to not be polynomial in n, but polynomial in log(n), in which case, our runtime is instead
exponential O(2°1°8(")) (the 2 comes from binary length of a number). This is a useful metric as we often
use number of bits as a security parameter, allowing us to parameterize complexity directly linked to our
notions of security.

Remark 2.9. We now assemble the entire Pohlig-Hellman algorithm. Consider a prime p that divides
|G| with multiplicity e. In Theorem 2.5 we need O(log(|G|)) group operations to compute the g™ and
a™ (i.e. with a fast exponent algorithm; this one time cost is overall dominated). To determine the
x; as in Theorem 2.6, we solve e sub-DL problems in O(,/p), and take O(log(|G|)) for computing the
powers in setting up the sub-DLPs for the p-adic expression. The Chinese Remainder Theorem has a
minimal implementation cost. Together we see that the Pohlig-Hellman algorithm has time complexity

O (X prime it (ei(108(GI) + v)))

Example 2.10. If |G| = 100,000,007, which is of prime order, we would need roughly /100,000,007 =
10,000 operations to solve DLP. On the other hand, if |G| = 100,000,000 = 28-5%, then it would only require
roughly (8 + 8) - log, (100, 000,000) + 8v/2 + 8/5 ~ 455 operations—a significant speedup!

One group we believe DLP to be difficult in is Z,. It is cyclic with the existence of primitive roots (see
ASO: Number Theory), and finding a generator is not terribly difficult (Section 11.1 [54]). Working with
the multiplicative group is especially advantageous since the operation of integer multiplication is one we
understand well and have implemented efficiently into computers, so we can calculate exponents modulo p
very efficiently (in O(logn) with square-and-multiply algorithms). Yet, despite being a well-studied group,
no other discrete-logarithm-solving algorithms have been found that are efficient. However, while there are
no polynomial time algorithms that solve DLP in Z,;, there are subexponential ones that are faster than the
general O(y/n) algorithms mentioned. There are two glaring weaknesses for choosing Z): 1) |Z)| =p —1is
not prime, so we have to work in a subgroup G < Z,’ hence requiring much larger choices of p to make the
subgroup of suitable size, and 2) the properties of integers are more well-understood (like factorization) and
attacks have been made exploiting these specific structures (i.e. indez-calculus attacks; see the Appendix).

Remark 2.11 (Change of base for discrete logarithms). I noticed the difficulty of DLP only relies on the
choice of group G, and not the choice of generator as well. Let b, 3 € G be two generators in an n-order
cyclic group, and a € G an element. Let z = log, a, y = logi@ a, and z = log, 5. So b* = a = BY = (b*)Y.
Therefore = 2y mod n, and hence loggz a = (log;, a)(log, 3) ™" mod n. So any algorithm that can efficiently
solve DLP with respect to base b can also efficiently solve DLP with respect to any other base 3.

Remark 2.12. While our definition of security is based on an asymptotic approach, we still need to eventu-
ally pick a concrete value of our security parameter n in practice; we still need to defend from the inefficient
attacks at small scales as well. How do we pick this? Often, we pick n (i.e. key length in bits) such that the
best-known attack takes at least 212% operations [6]. For reference, the fastest supercomputer as of writing,
El Capitan, can run at ~ 1.74 - 10'8 floating-point operations/second [24]. El Capitan would need over 6
trillion years to get through all those operations (for reference, the Universe is estimated to be 13.8 billion
years old [3]). (This ignores any parallelization, pre-processing, more specific types of computation, or any
other optimized strategies, but gives a rough estimate of the difficulty induced by the demand of 2!2%; it also
requires at least 2128 possible keys to avoid brute force attacks). Requiring 2" operations give the standard
of m-bit security level, which we can use as a benchmark to compare the efficiency of different protocols which
we will return to later [34]. A useful way to think of n-bit security is that it provides a benchmark against
the perfect secrecy of the one-time pad; the best way to break the one-time pad is to brute force check all
2™ possible keys, so this gives a rough idea of the size needed to have an equally safe one-time pad. There
are other ways to define security standards, but this is a simple reference for the efficiency of cryptographic

schemes for easy comparison.

2.3 Group Sizes and Parameter Selection

Just as before, even though DLP is thought to be hard, we still need to pick groups of an appropriate size
so that computation is still infeasible. Given our best DLP solving algorithms run in O(y/n) operations, we
want the group we work in to be of an order about 256 bits long so that we can obtain the /2256 = 2128
operation threshold from above. For the example above, that means we want our subgroup G' < Z to have
order approximately 22°6. But this is a subgroup, so we have to defend from attacks against the whole group
as well. The best known attack (specifically against Z;) is a more refined index calculus-type method called
the General Number Field Sieve that runs (heuristically) in O(exp[(64/9)Y/3(Inn)'/3(Inlnn)?/?]) [54] which
suggests that p should be about 3072 bits long as a generous security barrier (including any algorithmic
optimizations). In fact, it is suspected that using a 1024-bit prime is responsible for previous NSA leaks [2].

Table 1: Comparison between Classic Cryptographic Schemes™

RSA Discrete Logarithm
n-Bit Security | Length of N | Order-¢ Subgroup Order p Additive
of Z; Group (Z,,+)
112 2048 p = 2048, g =224 256
128 3072 p = 3072, ¢ = 256 204
192 7680 p = 7680, ¢ = 384 296
256 15360 p = 15360, g = 512 2128

*Cryptographic performance compared in terms of bit-lengths of their public keys.

Also, it is important to note that our choice of group is important. We have seen that solving DLP
in some groups can be trivial, but it is also important to consider that some groups’ operations are more
difficult to implement. While it is true that all cyclic groups of the same order are isomorphic, the efficiency
in implementing the group operation can vary greatly. The reason why it is common to use Z, is because we
have spent the time to understand how to perform integer multiplication as computer operations efficiently.
If we want to preserve this idea for DLP of easy to compute one way and hard to compute the other,
the choice of cyclic group can greatly impact our performance. From Table 1, we can see the compared
efficiencies of schemes with RSA and different choices of groups with DLP (the size of group directly impacts
the amount of memory needed to store each element on a computer). If we are to consider another choice of
group, ideally we would have smaller paramter sizes for equal or better security (and if same size parameters,
then more efficient implementations). In our case, elliptic curve cryptography (ECC) and its choice of
groups gives us what we are looking for.

3 Classic Elliptic Curve Cryptography

3.1 Mathematical Preliminaries

With a name that insinuates some amount of geometry, the math involved for ECC requires a bit more time
to develop on its own. In particular, we need the machinery to work with elliptic curves over finite fields.
We recall some facts about finite fields. The full details can be found in the Appendix.

Definition 3.1 (Field). A set K equipped with two commutative operations + and X is a field if (K, +) and
(K\ {0}, x) are groups with identity elements 0 and 1 respectively. Also, Va,b,c € K ax (b+¢) =axb+axc
(x distributes over +). For convenience, we often suppress x and write a x b as ab.

Example 3.2. R,Q,C,Z, = Z/pZ for prime p are all fields with the natural definitions of + and x.

n times
Definition 3.3 (Characteristic). The field characteristic Char(K) is the least integer n such that 1+ 1+ --- +1 =
0. If there is no such integer, the field is said to have characteristic 0.

Proposition 3.4. The characteristic of a field is either prime or 0.
Proposition 3.5. If Char(K) = p, then (a+ b)? = a? + bP for all a,b € K.

Theorem 3.6. There is a unique (up to isomorphism) finite field K of order q if and only if ¢ = p™ for
some prime p and integer n. We denote this field F,.

Proof Sketch. The forward direction can be proven by considering finite fields as finite dimensional Zcpar(x)-
vector spaces. The important idea with the converse is that we construct the field as the roots of f(z) =
xP" — z in the algebraic closure of ZT,. In particular, this can be seen as the defining feature of finite fields
and their extensions: F, C {a?=2:2 € ZT,} by Lagrange’s theorem, and ¢ — z = 0 can only have at most
q elements. O

Example 3.7 (Binary fields). Binary fields of order 2¢ are interesting since they allow for efficient com-
putation and implementation. For example, if we represent elements ag + a2 + asa? of the field Fg =2
Fo[z]/(z® + x + 1) as the binary string apajas, addition just becomes the XOR operation since the field
is characteristic 2 and polynomial addition is the same as coefficient addition of terms of the same degree.
Similarly multiplication can be done via bit-shifts and XORs. These are worth using for hardware optimized
for these operations, but extra care needs to be taken in ensuring the security of the protocol in which we
use them (in our case, the elliptic curve [47]).

3.2 Elliptic Curves and the Group Law

Definition 3.8 (Elliptic curve). Let K be a field, and a,b,c € K. An elliptic curve over K, denoted E/K,
is an equation of one of the following forms based on its characteristic:

Char(K)=2: y’+cy=a>+azx+b
Char(K) =3: y?=a%+az?+br+c
Char(K) >3: y>=2%+azx+b

Let E(K) = {(z,y) € K? : (x,y) satisfy E} U {co} where we include an element oo called the “point at
infinity”. In particular, we will be considering non-singular elliptic curves, i.e. if we consider the above as
an implicit equation F(x,y) = 0, then there is no point (z,y) € E such that 0F/0x = 0F/dy = 0. For the
last case, this is equivalent to A = 4a® + 27b2 # 0 (this is the discriminant).

Looking ahead, we are looking to construct a group out of an elliptic curve E(K). So in particular, we
want some way to take 2 points P;, P, € E(K) and generate a third point P € E(K).

Note that our elliptic curves are degree 3 equations in z. One of the ways to characterize cubic equations
is that they are the equations that precisely have 3 roots in an algebraically closed field (i.e. C). Put another
way, they (sometimes) intersect the line y = 0 (in R?) in precisely 3 points (counting multiplicities). We
can generalize this to any line: let y = mx + b, and substitute this into the elliptic curve equation, we get
(mx + b)?> = 2% + ax + b. This is still a cubic and hence has 3 solutions. Since lines intersecting cubics
relate these 3 points to each other, this suggests a potential way to maybe make a binary operation out of
an elliptic curve E: define a line via P;, P> and find the third intersection point Pj.

Definition 3.9 (Group law for elliptic curves over R). Let E/R be an elliptic curve, and P,Q € E(R). We
define the inverse —P and sum P ® Q.
o If P=(z,y), then —P = (z,—y). If P = oo is the point at infinity, then —P = co.

We define P @ Q = —R where R is the intersection between the line ¢ = PQ and E. That is, P ® Q is the
reflection of the third intersection point. We can define R as follows.

1. If P and @ have different 2-coordinates, then the line £ = PQ will intersect F in a distinct point R.
2. If £ = PQ is tangent to E at P, then we let R = P (and similarly if £ is tangent at Q).

3. If P =@, then let R be the intersection point between E and the line tangent to E at P.
4. If @ = —P, then R = 0.
5. Ppoo=0c06d P=P.

yi=x3-4x+2

4 -2 0 2 4
Figure 1: Example of the group addition on an elliptic curve over R.

This definition makes it clear why now include the point at infinity oco: vertical lines only intersect E
at 2 points not 3 without oco! oo can be thought of as a point that is at the end of every vertical line in
our plane. We can also straightforwardly derive the coordinates of R algebraically. Let P = (vp,yp),Q =
(zQ,y0Q), R = (xr,yr) be with P # Q. The line PQ is given by y = gg%i’;(x —xp)+yp. We thus want to
solve

2
<yQyP(x—acp) —l—yp) =23+ ax +b.
rQ —ITp

Note that for a monic cubic with 3 roots (z —a)(z — 8)(z —) = 2* — (a + S +7)z* +- -, i.e. the coefficient
of 22 is the sum of the solutions of the cubic. We know that xp, x¢ are solutions by construction of the line
via PQ, and hence we can find the third solution zr. Finding yr corresponds to reflecting the y-coordinate
of the intersection:

2
on— (yQyP) Cap— 50, YR = — (yQyP(xR_xPHyP) .

T —Tp rQ —ITp
If P = @, we replace the slope of the line with the tangent % at P. Implicitly differentiating the elliptic
2
curve nets % = 3?;% Rearranging similarly to above nets us a formula for P ® P = 2P:

3z% +a 2 323 +a
TR = <2P) —2rp, Yr=-— Pi(xR_xP>+yP .
yp 2yp

(If working in characteristic 2 or 3, similar formulas can be derived with the same method). Note since
we are assuming P, Q € E C R?, the above clearly show R = (zg,yr) € R?. By construction, it also satisfies
the elliptic curve equation, and hence R € E. Crucially, though, this works in any field. Since fields support
addition and multiplication, and subtraction and division by the existence of inverses, if P,Q € K2, our

above formulas show R € K? and satisfy the elliptic curve i.e. R € E (this last part is not as obvious; we did
our derivation in R, but one can just check the algebra to see y% = x% + axg + b). We can abstract away
this geometric approach to the operation and treat it completely algebraically.

Theorem 3.10. Let E/K be an elliptic curve. With the notion of addition above, (E(K),®) forms an
abelian group. That is, for all (not necessarily distinct) P,Q, R € E:

. (Commutativity) P& Q = Q & P

2. (Identity) P oo =00® P =P

3. (Inverses) P @ (—P) = o0

4. (Associativity) P® (Q® R)=(P®Q)® R

~

Proof. This is an interesting fact with a less interesting proof; having explicit formulas allows us to just
compute and verify. (Commutativity): PQ = QP are the same line and hence determine the same unique
P@ Q. (Identity) By definition; also, oo to be the point above all vertical lines, coP intersects F at —P, and
reflecting again gives P. (Inverses) The vertical line P(—P) intersects oo, and —oo = co. (Associativity)
Pick 3 points and compute and verify (lots of cases). O

The only really non-obvious fact is associativity. For more elegant proofs outside of rote calculation,
one can take a geometric (Lemma 2.11 [62], Section 3.1, Theorem 1.2 [30]) or a complex analytic approach
(Section VI.1 [32]) to prove associativity in specific fields.

Remark 3.11. It might seem odd that we define P @ @ to be the reflection of the intersection —R as
opposed to just R. However, in trying to form a group, co is acting as our identity element. If we try to
calculate P @ oo, the third point of intersection would be —P. If we want to preserve P & co = P, we need
to reflect the intersection. This reflection is integral to our above group construction.

Remark 3.12 (Weierstrass normal form). Our description of an elliptic curve is an equation written in
Weierstrass normal form. If the crucial detail is we have these 3 intersection points between lines and
the curve, Weierstrass equations seem to constitute a very narrow class of possible cubic equations we could
consider. The reason we do not look at any arbitrary cubic is because any non-singular cubic can be rewritten
into Weierstrass form [56] (see Part B: Algebraic Curves).

Remark 3.13 (Homogeneous Coordinates). With the need to include a “point at infinity” oo that exists
somewhat artificially in our group structure, it is natural to explore the topic in the context of projective
planes and homogeneous coordinates. Beyond just unifying the theory a bit more, there are some nice
implementation benefits that allow us to avoid calculating expensive divisions (see the Appendix).

We used R as the visuals make more sense, but it is not an obvious fact that we get our three intersections
in any finite field (when also including the point at infinity). Our intuitive fact for algebraically-closed fields
is a specific case of Bézout’s theorem (see Part B: Algebraic Curves):

Theorem 3.14 (Bézout’s theorem). If C' and D are two algebraic curves in the projective plane Pa of
degrees m, m with no common component, then they intersect (counting multiplicities) at nm points.

Although we do not strictly need this theorem once we have the above formulas for addition, Bézout’s
theorem can be seen as another potential motivator to look at elliptic curves in the way we have.

Bringing it back to cryptography, we can now state the believed-to-be-hard problem of elliptic curves:
DLP for elliptic curves (ECDLP). Given P € E(F,), then nP = @, then n is the discrete logarithm of Q
with respect to P (where nP denotes the n-repeated-addition of P to itself). Our goal now is to justify why
this group in particular is preferable for DLP.

3.3 Group Structure and Hasse’s Bound

We can now define groups over elliptic curves, but as part of constructing this group, clearly which field K
we are working in impacts the structure of this group. The primary question is, as we have seen before,

10

how big is this group? For the sake of computation, we use finite groups, and hence will consider elliptic
curves over a finite field ;. We'll denote the multiplicative group of the field by Fy =, \ {0}.

First, note an elliptic curve E(FF;) can have at most 2¢ Fy-points: for each z, there is at most 2 possible
y € F, that satisfy E (each element has at most 2 square roots). However, since the map z z? is 2-to-1
in F7, only half the elements in F, have well-defined square roots. So we might expect maybe at most half
that many points to be in E(F,). Including the point at infinity oo, 2¢/2 4+ 1 = ¢ + 1 would be an upper
bound on the size of the elliptic-curve group. Hasse’s bound says that this is heuristically the correct size.

Theorem 3.15 (Hasse’s bound). For an elliptic curve E/F,, if N = |E(F,)|, then [N — (¢ +1)| < 2,/3.

To prove this, we need to consider endomorphisms. We will follow the computational approach in
[62] (Section 2.9), taking inspired intuitions and adapted propositions and proofs from the more generalized
abstractions as found in [56][55].

Definition 3.16 (Isogeny). An isogeny between two elliptic curves £y /K, Fy/K is a group homomorphism
a : Ei1(K) — FE5(K) given by rational functions i.e. a(z,y) = (Ri(z,y), Rz2(z,y)) for rational R; with
coefficients in K (where K is the algebraic closure of K). We also define that a(co) = co. Two elliptic curves

are isogenous if an isogeny exists between them.
Definition 3.17 (Endomorphism). An endomorphism is an isogeny to and from the same elliptic curve.

In what follows, we will consider endomorphisms for convenience and clarity, but all definitions and
propositions below further apply to isogenies too.

Remark 3.18. This fits the standard definition of endomorphisms with groups, only with the additional
restriction that the coordinate-wise functions are also rational. The primary reason is to ensure our endo-
morphisms are well-behaved. Our objects, elliptic curves, are defined via polynomials, so it is natural to
want to keep our operations confined to the same realm of objects; this follows the typical study in algebraic
geometry. In a similar vein, note the use of the closure of the field K. We have to remember these elliptic
curves are not just algebraic objects, but geometric ones as well. Working in the closure ensures we capture
the total structure of such objects, and makes studying the original groups E(K) just restrictions of these
richer objects.

Remark 3.19. Isogenies inherit a lot of structure from the groups that allows us our definitions to be a lot
looser than what we would imagine useful. For example, surjectivity is given for free (Theorem 2.22 [62]),
and even being homomorphism is implied just being a non-constant rational map (I11.4.8 [55]). A useful one
we will refer to every now and then is a type of converse to the First Isomorphism Theorem for groups. By
the First Isomorphism Theorem, we know for any isogeny ker ¢ is a subgroup of the domain. For elliptic

curves, the converse turns out to be true: for any finite subgroup G < E(K), there exists a unique elliptic

curve E' and separable isogeny ¢ : E(K) — E’(K) such that ker¢ = G (111.4.12 [55]). We will write the
unique codomain E' = E/G to explicitly mark out a relation between E and G, but it is mostly syntactical
since while the First Isomorphism Theorem justifies this notion of quotients, E’ is still another elliptic curve
equation that does not necessarily have the similar transfer of quotienting directly.

A possible motivation for looking at endomorphisms is given by this simple proposition in group theory.
Proposition 3.20. Let p : G — H be a group homomorphism, and h € Im(yp). Then |¢~(h)| = | ker(p)].

Proof. Let z € ¢~ '(h). By the First Isomorphism Theorem, G/ker(p) = Im(p) via mapping cosets
gker(¢) — ©(g). Hence p~1(h) = zker(¢) and thus [p~1(h)| = |rker(p)| = | ker(p)]|. O

If we can find a suitable homomorphism whose kernel is isomorphic to our group, we can estimate its size
by finding the size of the preimage under the endomorphism. We will generalize this later. The following
endomorphism, called the Frobenius endomorphism will be our primary focus.

Example 3.21. The map [n] : P — nP where n is an integer is an endomorphism.

11

Example 3.22 (Frobenius endomorphism). Let (z,y) € E(F,). Then ®,(x,y) = (29,y?) is an endomor-
phism.

Proof. To check this, let (z,y) € E(F,), so y?> = 2® + az + b. Since ¢ = p", and Char(F,) = p, we can use
the fact that (a + b)? = a? + b?. Raising the equation E to ¢ on both sides gives: (y?)? = (29)3 + a%x9 + b1.
Recall that F is a group of order ¢ — 1, so a? = a for all @ € F. Hence (y")? = (29)3 + az? + b and so
O,(z,y) € E(Fy).

For the homomorphism property, consider the sum of two arbitrary points (z1,y1) ® (z2,y2) = (x3,y3)-
Using the formulas given above, we can find that ®,(x3,ys3) is:

vi—yi\’ Ys — i
29— SN ST S 27 — 7Y 4 o9,
3 (xg—xri’) 1 2 Y3 zg—x‘f(1 3) H i
Comparing the formulas, we see then that ®,((x1,y1) ® (22, y2)) = Py(x1,91) & P4(22,y2). A similar check
can be made on the formulas if adding the same point to itself; the key detail is that (a 4+ b)? = a? + b4
allowing us to distribute powers of ¢ through our rational formulas. So ®, is an endomorphism. O

Remark 3.23. Note the Frobenius map ®, is not necessarily an endomorphism for all g. Notably, we relied
on |K*| = ¢ — 1 that allows us to reduce the coefficients a? = a,b? = b with group theory. More generally,
if Char(K) = p, then @, : E(K) — E(pk)(K) is an isogeny where E®) is the p*-power Frobenius image
of E (this is different from Im(®,x); note we must use a power of p to preserve it being a homomorphism).
Specifically, if E : y?> = 23 4+ ax + b then E®") . y? =3 + PLA N Using the same verification above of
raising both sides of E to p¥, it is easy to see that if (z,y) € E(K), then @, (z,y) € E(pk)(K).

Proposition 3.24. Let ®, be the Frobenius endomorphism, and let (z,y) € E(F,). Then ®4(z,y) €
E(Fq) — (I)q(x7y) = (‘rvy)

Proof. Since z € F,, z € F, <= 7 = z (see Theorem 3.6; F, is the ¢ distinct solutions of 2¢ = z). Then

along with our hypothesis (z,y) € E(F,), we get the straightforward equivalences:

(z,y) € E[F,y) < z,yelF, < zi=z,y! =y <= Qy(z,y) = (z,y) O

Proposition 3.25 (Endomorphism standard form). Every endomorphism can be written as a(z,y) =
(ri(x),re(x)y) for rational functions r1(x),ra(x) € K(z).

The proof follows mostly considering the fact that all even powers of y can be eliminated in x with
the curve equation y? = 3 + ax + b, and the rest is considering what is necessary to preserve a as a
homomorphism. The standard form makes working with endomorphisms much simpler. For one, we can
now measure the “complexity” of endomorphisms in a similar way to how we would with polynomials. The
degree of a polynomial tells us how many roots it has, and in particular tells us how many possible inputs
can map to a given output. We can ask the same question for endomorphisms: for a given Q = (zg,yq)
how may points P = (zp,yp) are there such that a(P) = Q7 Looking at the standard form, we want to
solve (r1(zp),r2(xp)ypr) = (2Q,yg). If we write r1(x) = p(x)/q(x), then by looking at the z-coordinate, we
want to solve p(xp) — xgg(xzp) = 0. This is a polynomial in zp of degree d = max(degp(x),deggq(x)), and
hence we have up to d possible points such that «(P) = @. This gives us the following definition.

Definition 3.26 (Endomorphism degree). Let a(z,y) = (r1(z),r2(x)y) be an endomorphism in standard
form. Then write r1(x) = p(z)/q(x). The degree of a is deg(a)) = max(degp(x),degg(x)). If a =0, then we
say deg(a) = 0.

Example 3.27. The Frobenius endomorphism has degree deg(®,) = g.

Example 3.28. Consider the endomorphism [2](P) = 2P. Since the formula for the z-coordinate is

(3x§3—|—a 2 5 (3mfp+a)2—4xp(:c?j>+amp+b)
€T = —_— — 2z —
v 2yp 4(x% 4+ axp +b)

12

we can see that deg([2]) = 4. Inductively, we directly get deg([2"]) = 22". If one spends the time substituting
all the formulas for coordinates, one can find for all n that deg([n]) = n?

The motivation of this definition is that it makes degree act similarly to how it would act with polynomials.
For example, it is multiplicative with respect to composition: deg(a o 8) = deg(a) deg(f).

Definition 3.29 (Separability). Let a(z,y) = (r1(x),r2(z)y) be a non-zero endomorphism in standard
form. « is separable if r|(x) #Z 0 (where we are using the formal derivative as opposed to limit definitions).

This too is adopted from a similar idea with polynomials. A polynomial f(z) € K[z] is separable if it has
distinct roots in the algebraic closure K (this is not quite right; we consider a special field extension called
its splitting field). If f(z) has a repeated root «, it’s easy to see that ged(f(z), f'(x)) = (z — a)g(x) for some
g(x) (easy to show converse too). So if f is irreducible and not separable, ged(f, f') # 1. But since f(z) is
irreducible, it must be that f(z) | f'(z). Though, deg(f’) < deg(f), so it must be that f’ = 0. (Converses
are easy to see to make these notions a proper equivalence and hence definition).

Example 3.30. The Frobenius endomorphism @, is not separable, as r(x) = qrd~1 = 0 since ¢ is a power
of p = Char(F,).

Remark 3.31 (Endomorphism decomposition). [59] Using relatively straightforward algebra on the standard
form, we can show all inseparable endomorphisms are of the form «(x,y) = (r1(2P), r2(aP)y?) for rational
functions rq,72 in a field of characteristic p. Hence, we can decompose any endomorpshim o = agep 0 @)
for some separable endomorphism ase, and @, is the p-power Frobenius endomorphism by checking if « is
inseparable, and “extracting” the inseparability by factoring out ®, repeatedly. We call deg,(a) = deg(asep)
the separable degree of o (hence note deg(a) = p™ deg,(«)). If deg,(a) = 1, we say « is purely inseparable.

The following is our most important tool in proving Hasse’s theorem.

Theorem 3.32. Let o # 0 be an endomorphism of an elliptic curve E. Then deg(a) > |ker(a)|, with
equality if and only if « is separable.

We also need one more fact from field theory.

Proposition 3.33. Any algebraically closed field K is infinite.
Proof. Say otherwise, and K = {1, -+ ,a,}. Then consider f(z) = 1+ [[;—,(z — ;) has no roots in K. [

Proof of Theorem 3.32. We first show the separable case. The idea is to find a point in Im(«), show there
are deg(«) points in its preimage, and then use the above proposition to determine | ker(«)|. Write a(x,y) =
(r1(z), r2(x)y) in standard form with r1(x) = p(x)/q(x). « is separable and so r/(x) # 0, thus p'(z)q(z) —
p(z)g'(x) Z0. Let S = {z € K: (p'¢—pq')(z)(q(x)) = 0} (note this is finite). Now pick a point (a,b) € F(K)
with the following conditions:

1. a,b#0,(a,b) # oo.

2. deg(p(z) — aq(x)) = max(deg p(z), deg q(x)) = deg(a).
3. aé¢riS).

4. (a,b) € a(E(K)).

Conditions (1)—(3) ensure we pick a “normal” point, and (4) is so that we pick a point in the image. Note
there are only finitely many points that individually contradict conditions (1)—(3). Also, since we are working

in an algebraically closed field, for every z there is a corresponding y such that (x,y) € E(K), and so a(E(K))
is an infinite set. So there is a possible choice of (a,b) satisfying the above.

Let (z1,y1) € E(K) such that a(x1,y1) = (a,b) ie. p(z1)/q(xz1) = a and ro(x1)yr = b. Since x;
determines y;, we only count the possible z1. The 1 are the roots of p(x1) —ag(z1) = 0, and by assumption
(2), this has deg(a) solutions with multiplicity. We need to show these roots are distinct.

13

Let zy be a double root. Then p(xg) — aq(zo) = p'(x0) — ag’(z¢) = 0. Hence, multiplying the equations
p(zo) = aq(zg) and p'(x0) = ag’(x0), we have ap’(z0)q(xo) = ap(xg)q’(xo). Since a # 0, this implies that z
is a root of p'q — pq’ i.e. ko € S. But then a = ri(xg) € r1(S), contradicting (3).

So p(z) — aq(z) has deg(«) distinct solutions, and by Proposition 3.20, | ker(a)| = |a~!(a, b)| = deg().

For the inseparable case, the steps are the same, except we notice that p’ — aq’ is identically 0, and hence
p — aq has a repeated root and so fewer than |deg «| distinct solutions. O

Remark 3.34. The above proof is essentially the idea to prove isogenies are surjective: pick any point

(a,b) € E(K), and look at the roots of the corresponding polynomial p(x) — aq(x), checking the cases when
it is constant/non-constant.

I observe the following corollaries.

Corollary 3.35. For all endomorphisms a, deg (o) = | ker(a)]|.

Proof. Note | ker(a)| = | ker(asepo®y)|. But ker(®,,) and hence ker(®y) is trivial: (X?,Y?; ZP) = (0,1;0) <=
(X,Y;Z) = (0,1;0). Since all endomorphisms are surjective, ®} is also bijective. Hence |ker(a)| =
[Ker(tgep 0 O2)] = | ker(apep)| = deg(anep). 0

Corollary 3.36. All degree 1 isogenies are group isomorphisms.

Proof. 1 = deg(a) > |ker(a)|, hence the kernel is trivial and so « is injective. Since isogenies are also
naturally surjective, all degree 1 isogenies must be group isomorphisms. O

Proposition 3.37 (Dual isogeny). Let a: E1(K) — E5(K) be a degree n isogeny. Then there exists a unique

degree n isogeny & : Eo(K) — E1(K) such that oo & = [n]g, is the multiplication-by-n map on E1(K), and

&doa=n|g, is the same map on E3(K). We call & the dual isogeny of a.

Proof Idea. See Theorem 12.14 [62], I11.6.1 [55]. The proof relies on constructing Galois extensions, and in
turn deducing the existence of such a map. For a heuristic idea of what the dual is/why it should exist, we
can turn to group theory. If an isogeny « is separable, then |ker a] = deg(«) = d, and hence is a d-to-1 map.
The goal of the dual & is to create a pseudo-inverse for c. But if the kernel is non-trivial (i.e. when d > 1),
we cannot consider a unique inverse, but rather have a choice of elements in a coset i.e. if a(P) = @, then
a~}Q) = Pkera (this is straight from the First Isomorphism Theorem). To create some map Eo — Ej,
we might just consider the natural sum of elements in that coset: &(Q) = > pcprera B = D kckera P T5k =
[[ker] P + 3} crer o k- This gives a homomorphism, and since every element differs by this constant sum
over the kernel, we can ignore it. Since we can choose the representative, this lends itself to the idea we
can hopefully define that (& o «)(P) := [dega]P. In this way, the dual can be thought of as a type of
pseudoinverse that loses information of ker a. Of course, this is a loose sketch given that this “sum over
coset representatives” is non-unique for two representatives of the same coset. Many properties we would
hope of the dual are true: a; o dia = G4y 0 Ga, a1 + 2 = &1 + G2, & = a, etc. O

Proposition 3.38. The degree map deg : End(E) — Z is a positive definite quadratic form. Further, the
pairing (¢,) — deg(p — 1) — deg(¢) — deg(v)) is bilinear.

Proof. (I111.6.3 [55]) Since the degree of an endomorphism is defined in terms of the degree of polynomials,
it is clear that deg(¢) > 0, deg(¢) =0 < ¢ =0, and deg(¢) = deg(—0¢).

For the pairing, consider the ring injection Z — End(E) via n — [n]. This is an injection since if [n] = [0],
[n] is non-constant for n > 1 and deg([n]) > ker([n]), and hence the kernel cannot be all of E(K) (i.e. [n]
cannot be the 0 map). So it must be that n = 0 and the map is injective. Hence, and taking advantage of
the dual isogeny,

[(6,)] = [deg(6 — v)] — [deg(6)] — [deg(w)] = (6 — D) 0 (6 —¥) —dod—Pov=—dov—dog

which is linear in both ¢, ¢ by linearity of the dual and composition. We conclude with the ring injection. [

14

Proposition 3.39. Let ¢, v be endomorphisms of E. Then | deg(¢—1))—deg(d)—deg()| < 24/deg(¢) deg(v)).

Proof. (V.1.2 [55]) Since deg(¢ — 1) — deg(¢) — deg(v)) is a positive definite bilinear form, we can use a
version of Cauchy-Schwarz. For m,n € Z, we have

mn(¢,¥) = (me, ny) = deg(me — ny) — deg(me) — deg(nih).

Note that deg(m¢) = deg([m]) deg(¢) = m? deg(¢), and that deg(-) > 0 by positive definiteness:

0 < deg(me — np) = m? deg(¢) + mn{p, ¥) + n® deg(v)).

If we let m = —(¢,) and n = 2deg(¢), we get

0 < (—(¢,))* deg(9) — (¢,)(2deg(9))(¢, ¥) + (2 deg(¢))* deg(¥))
= deg(¢) (4 deg(¢) deg(v) — (¢,¢)%)

which is what we wanted. O

Proof of Hasse’s bound. Let ®, be the Frobenius endomorphism (z,y) — (29,y?). Since F; is a group
of order ¢ — 1, we have for all P € E(F,), ®,(P) = (2%,y?) = (z,y) = P. That is, ®,(P) — P = 0,
or (¢, —1)(P) = 0 (with 1 being the identity operator). Therefore E(F,) C ker(®, — 1). ®, — 1 is an
endomorphism, so naturally we have ker(®, — 1) C E(F,). By Proposition 3.24, we can reduce this to
ker(®, — 1) C E(F,) so ker(®, — 1) = E(F,). Also, if one computes (z?,y?) & (x, —y), they will find that
r'(x) # 0, and so &, —1 is separable. Then using Theorem 3.32, we have that N = |E(F,)| = | ker(®,—1)| =
deg(®, — 1). By Proposition 3.39:

|deg(®y — 1) — deg(®,) — deg(1)] < 24/deg(®P,) deg(1).

Putting it all together, we obtain [N — (¢4 1)| < 2,/q. O

A useful consequence of this theorem is that it means that it is not hard to find a point P € E(F,), since
a decent proportion of elements we expect to be in E actually are in E(F,). So if we want our group to
be 128-bit secure, we want our group to be (ideally a prime) around 2256, so Hasse’s bound says we want
to pick a field of order with around 22°6. This is the key detail that Hasse’s bound demonstrates: we get
groups approximately of the size of the field we pick, which implies our group generation is size efficient
(i.e. don’t need to work in a large field to only get a small group). Often we work in large prime fields F,,
(to avoid complex, polynomial operations) or large binary fields Fqr for optimized computations (but is less
well-studied, and hence has varying levels of trust).

This is only half the the story though; we want the order of this group to be prime, or at the very least
have large prime factors. For a while, this was the best we had for having a sense of the size of the group
E(F,). We could guess and check, or iteratively design curves (which is still fairly common [§]), but it was
not until the 1990s we could exactly determine the size of these groups efficiently [51]. Even then, these
were not particularly helpful given that we would need to factor these large order groups to find out if they
are suitable (i.e. prime/has large prime factors to avoid the Pohlig-Hellman attack). It was not until only
recently have we been able to design elliptic curves with precise orders in mind [13].

Not to mention, we still have not picked a generating point P € E(F,) in the case of non-prime groups.
Finding those can be just as tedious, having to pick random points and testing its order (i.e. with Lagrange’s
theorem). Despite these issues, elliptic curves seem (and as has been shown) promising in providing a basis for
cryptography. For even if all of these “issues” seem like problems, having the range of choices in parameters
(i.e. the field and the curve), we can often design curves to lessen the seemingly big problem of having a
suitable group. And if elliptic curves are really cryptographically viable, we can do the one-time computation
of finding a field, curve, and generating point and call it a day.

15

3.4 The Nechaev-Shoup Theorem and Confidence in ECDLP

While it is true that we have not found any better ways to solve ECDLP than in O(y/n), it does not give
a solid reason for why we should use ECDLP for the foreseeable future. After all, Z; fell victim to index
calculus, who is not to say there is not another efficient algorithm on the horizon? No one can say that
there is not such an algorithm, but the inherent lack of structure in E(F,) would suggest that perhaps it
is protected from future attacks; there is no underlying structure like prime factorization to exploit. But
that only suggests there are no elliptic-curve group specific attacks we have to worry about. Could there be
better attacks that work for any group, like Baby-Step Giant-Step?

The answer turns out to be no. The Nechaev-Shoup Theorem states that any non-group specific discrete
logarithm solving algorithm must run in at least O(y/n) [42][53]. The idea is that with only g, h = g% given,
we can learn about the group by only iteratively constructing new group elements. But the new elements
will only be of the form g*h? = g®T5 for some integers a, 5. So if a choice of oy, B; creates an element we
have seen before, say for asg, B2, then we have learned something about the secret discrete logarithm z via
the relation a; + S1x = as + Box. This does not explicitly determine x, but it is new information regarding
relations between x. If we use m operations constructing possibly m total expressions, we get a total of
O(m?) possible pairs of expressions that might give information about z. The full formalization and a proof
sketch can be found in the Appendix.

Theorem 3.40 (Nechaev-Shoup). Let G be a group of prime order p and A be a probabilistic algorithm. If
A makes m mathematical operations via a black box oracle, then the probability that A solves the DLP is

(m+2)2 1
P (A(p,g.9%) =) < o 4 =
(A(p,g,9") =) 5 ,

Corollary 3.41. Any generic group DLP solving algorithm runs in Q(,/p).

Proof. We have an upper bound on the success probability of any such algorithm 4. If we want A to succeed

2
with probability at least, say, 1/2 (or any number bounded away from 0), we need at least % < % + %.
Rearranging, we get v/p —2 — 2 < m. Since m denotes the number of operations/requests we made, if we
want bounded-away-from-0 probability of success, we need at least Q(,/p) operations. O

So we do not have much to worry about at the moment with respect to the discrete logarithm problem;
in some sense, it is provably hard that its hard to solve for all groups at once, and instills some confidence
in elliptic curve groups. With their complicated formulas for addition alongside the difficulty in pinning
down the size of the groups, understanding the structure of elliptic curves is far from easy. This “black box”
structure that obscures our understanding allow us, for the time being, to treat them as a generic group and
hope that DLP remains hard within them.

3.5 Security and Implementation Analysis

Despite ECDLP being a very strong candidate for cryptographic applications, they are not without flaw.
Just as we reduced DLP to need to be in prime order, or more efficiently attack DLP in Z) exploiting its
structure, there are similar considerations that if not accounted for can leave us with similar vulnerabilities.
Here are a couple of considerations.

3.5.1 Anomalous Curves

We have been heralding prime order groups and the use of prime order fields in elliptic curves as optimal,
but if it happens to line up such that |E(F,)| = p (with p prime), then turns out our protocols break. These
are called anomalous curves, and were found to be vulnerable in 1999 [57]. As is the idea in much of algebra,
we can simplify DLP by considering a lift to a bigger field with more tools at our disposal. By considering
our elliptic curve over QQ,,, the p-adic numbers, we gain access to a formal logarithm that directly solves DLP
with simple arithmetic and division. This only works for anomalous curves since the orders of the group
and field being equal makes it such that multiplication-by-p behaves nice enough to give the isomorphisms
necessary to use this easy logarithm formula [57][35].

16

3.5.2 Supersingular Curves

Say we are working with an elliptic curve over a field K of characteristic p. Consider the multiplication-by-p
map [p] on our specific elliptic curve. We say a curve E/K is supersingular if ker([p]) = {oo} is trivial (note:
this is a separate notion of the singularity of a curve). There are equivalent notions of supersingularity [55],
and this additional structure the curve inherits from this property lend itself to new vulnerabilities [38] via
the Menezes-Okamoto-Vanstone attack. The MOV attack ultimately works by transferring the problem of
ECDLP in E(F,) to DLP in an extension of the ground field F+ (we have seen via index calculus that DLP
is easy for prime p in F)f = Z); similar fast index calculus methods exist for any finite field [31]). The
specific isomorphism that translates the problem is given by a pairing function from ker([p]) x ker([p]) — Fy,
and the supersingularity of E makes this field extension [relatively small (i.e. k < 6), making the DLP
in the finite field still tractable (relative to the size of the original field F,).

3.5.3 Invalid Point Attacks

This is less of a concern of specific curves, but more so implementation of these protocols. Recall the doubling
formula 2P = (zp,yp) ® (xp,yp) on an elliptic curve y? = 23 + ax + b we found earlier:

322 +a 2 322 +a
Top = <P> —2zp, yop=—|—2—(zr—xp)+yp
2yP 2yp

Note how this only depends on the choice of point P and a. Similarly, the general point addition formula
does not depend on either a,b given we know the two points we are adding. So the general formula for nP
only depends on a and P. So for any value ', the value nP is calculated the same on the elliptic curve
y? = x3 +ax + . This is where the danger lies. If an attacker has access to the result nP during a protocol,
they can engineer a curve E’ with a base point P’ that specifically has small order (say kP = o), and falsely
send P’ to compare the result nP’ to deduce information of n mod k. Hence it is important to somehow
validate that the point received to calculate nP is on the desired curve and not a malicious attempt to gain
information.

3.5.4 Comparison to Other Classic Cryptographic Schemes

What makes elliptic-curve cryptography so appealing is that no one has been able to break the elliptic-curve
discrete logarithm problem any more efficiently than O(y/n). This is unlike DLP in Z,* and integer factor-
ization for RSA, where index calculus and number field sieves have greatly reduced their efficacy. However,
security is not the only important detail. Different operations and algorithms offer different implementations
and hence different speeds.

Table 2: Comparison between Classic Cryptographic Schemes™

RSA Discrete Logarithm
n-Bit Security | Length of N | Order-¢ Subgroup Elliptic-Curve
of Z, Group Order ¢
112 2048 p = 2048, g = 224 224
128 3072 p = 3072, ¢ = 256 256
192 7680 p = 7680, ¢ = 384 384
256 15360 p = 15360, g = 512 512

*Cryptographic performance compared in terms of bit-lengths of their public keys.

For ECC, say we are working in an n-bit order field F, (i.e. n = logg). For an n-bit random integer
k, we want to know the time complexity of computing the public key kP. Calculating kP in an elliptic
curve requires O(n) “double-and-add”-ings that involve a number of field operations given by our addition
formulas (see Appendix). Our formulas are dominated by the cost of multiplication and division, which is
O(n?). So the total cost of computing the public point kP is dominated by O(n?) operations.

For RSA, say we are working with an n-bit private key N = pq. We need to find two primes p, ¢ of of n/2
bits. Using something like the Miller-Rabin Test (see ASO: Number Theory) has complexity of O((n/2)%).

17

Computing the product N = pg and ¢(N) = (p—1)(g—1) is also bounded by O((n/2)?). The public exponent
e is usually fixed, and computing d = ¢! mod N can be done with the extended Euclidean algorithm in
O(n?). Hence overall is dominated by O(n?) in the prime generation.

So not only does RSA require larger keys than ECC for equivalent security, it is still slower to generate
public keys even assuming equal size keys/security parameters. ECC gets a bit of an edge allowing design
of the base point P alongside the elliptic curve in the public parameters (with random point generation, we
would expect it to be about exponential as the probability of picking a random point is |E(F,)|/|(F,)?| ~
1/q¢ = 1/2™). In practice, ECC’s speedups in both key generation and encryption/decryption (i.e. with
signatures) become more and more apparent at bigger security levels [36].

There are practical differences, however. For one, elliptic curves and their groups are much more geometric
than algebraic. Unlike RSA that just operates with numbers that can naturally encode letters, words, and
messages, encoding text with arbitrary points on a curve seems far less intuitive. As such, elliptic-curve
algorithms have found themselves in use for more primitive applications, like key exchanges and digital
signature algorithms as shown above. But nevertheless, they remain a core part of cryptography due to their
relative efficiency at achieving n-bit security for less memory.

4 Introduction to Quantum Computing

So far, our discussion has been centered around elliptic curves and algorithms to use them to protect and
attack secrets. However, our analysis has centered around classical computers. Look back at Theorem 3.45,
and our analysis that a general algorithm requires at least O(y/n) operations to solve the discrete logarithm
problem. The key to the proof is that for m operations, we get at most m? possible comparisons to get
information; we have to take m queries to the oracle to update a running list Leem, as we sequentially
compute elements. This is the natural interpretation for computers, as that is also how we perform tasks:
one step at a time. Quantum computers challenge this. The following is an inspired interpretation of [48]
11 [9].

4.1 What is Classical Computing?

Classical computers arose as a means to formalize computation—the mathematical symbols and processes
according to well-defined rules to solve problems and determine solutions. The big question, though, is
how can we represent these algorithmic (and often numerical) operations? This notion of computability
and decidability of mathematical problems culminated in the 1930s to the idea of a Turing machine: a
hypothetical machine that can carry out any computation given enough time. The critical detail in the
Turing machine, that later influenced the design of electronic computers, is that we store information as
binary digits (or better known as bits): cells where data is stored can either be a 1 or a 0. These well-defined,
clear-cut binary states naturally force computers to complete tasks sequentially to update the memory states.

4.2 Key Differences of Quantum and Classical Computing

With the advent and major paradigm shift of quantum mechanics in the early 1900s, understanding the
new, non-intuitive phenomena was at the forefront of this new field. Thought experiments that have now
pervaded pop culture, like Shcrédinger’s cat—where a cat can be both dead and alive at the same time—were
significant hurdles of the time. When computers continued to be developed and become more powerful,
modelling classical physics became a matter of precision and available memory. Quantum mechanics was
less friendly to current technology, requiring exponentially higher overhead to simulate. So in the 1980s, it
was proposed that perhaps we need to leverage quantum phenomena to model quantum phenomena. These
motivations in tandem with previously proposed ideas led to the first ideas of the modern quantum computer.

The most fundamental difference between classical and quantum computers is how information is stored.
As mentioned, standard bits can occupy one of two definite states, either 0 or 1. Quantum bits, or qubits,
likewise can measure to two states |0) or |1) (like how the cat is either dead or alive once the box is opened).
But before measurement, qubits can be in superposition: an intermediate state that is neither quite 0 nor

18

quite 1. A way to think about it this as we will see is that instead of working with just 2 states as with
classical computers, quantum computers operate in a 2-dimensional vector space of states with a basis of our
typical 2 states; instead of just flipping a coin heads or tails, we now allow ourselves infinitely many edge
flips as well. We will see that allowing this range of in-between states, and specifically allowing for complex
parameters follows from a generalization of probability. These superpositions is where lies the potential to
surpass previous computing limits. We outline these motivations below.

4.2.1 Brief Aside on Qubits (Mathematical Approach)

Quantum computing can be derived from the physics approach in light of all of the modelling and machinery
that was developed in response to the apparent paradoxes of the science. However, for our purposes, we can
derive a notion of quantum computation and qubits purely from a generalization of probability.

Consider a probabilistic classical bit, that is 0 with probability o and 1 with probability 5. What can we
say about these parameters is that o, 3 > 0 and a+ 3 = 1. Writing these as a probability vector B = (a f3),
the latter assumption can be written with the L'-norm || 7||; = 1. These are two of the axioms of probability.
We use these since they are intuitive. Probabilities represent a proportion of occurrences, or confidence, and
treating these as linear gives consistent behavior and simple math. Operators that map probability vectors
to probability vectors are stochastic matrices with rows that sum to 1.

But these do not limit us theoretically: what if instead we used the FEuclidean norm and required that
| 7]l2 = o + B2 = 1? We still want the parameters (o 3) to still correspond to some probability of the bit
outputting 0 or outputting 1, so we simply just let it do so with probability o and 32 respectively. Unitary
matrices take the place of stochastic matrices to map these normalized vectors (as they preserve norms; in
fact, this is the only other choice of norm; any other norm does not have a consistent set of transformations;
pg. 118 |1]). This choice is the true difference with quantum computing: not only do we allow ourselves to
these “in between” states, but the probabilities are governed by this Euclidean norm and thus we can have
two distinct qubits that have the same output probability distribution.

This 2-norm bit («) is our qubit. Instead of writing (« /), we write a|0) 4+ 5|1) (think of |0),]1) as
basis vectors with this notation). When «, 8 > 0 then we say the qubit is in superposition. Immediately we
start to see some of the strangeness of qubits appear. Consider the unitary matrix

1 1

H=|v 2.
V2 V2

This is a “randomizing operator”, called the Hadamard transformation/gate. Consider applying this to

the deterministic qubit |0) that outputs 0 with probability 1.

I I C IR
Ho= £ L[] =[] = 0+ 5.
o) i 2 ov2
H makes our qubit go from deterministic to in superposition, half the time now outputting |0) and the other
half |1). If we apply H again:

1 1] (L
H? o) = [f f] M - [=m
vzZooV2 V2

Randomizing a random qubit outputted a deterministic qubit! For a qubit « |0)+/3 |1), while our probabilities
are in terms of squared terms o2, 32, our parameters are not and can hence cancel each other out across these
transformations. This physically manifests in deconstructive interference; in the context of waves, adding
the amplitudes of two waves pointwise will have peaks and valleys cancel out. If we think of H as inducing
a coin flip, applying H once can make our qubit either |0) or |1). In either of those states, applying H
again causes another coin flip. So we have two paths to end up at |0) after two flips: |0) — |0) — |0) and
|0) — |1) — |0). But the latter path has negative probability amplitude and cancels out with the former
path with positive amplitude. So at the end of either path, the only positive probability outcome is |1).

19

o . . 1
Our qubit is not quite fully correct. For example, consider for the operator A = 0 } Ideally, we

0 -1

could break this up into intermediate steps, i.e. there should be a B such that, say, B2 = A. We want
a type of continuity among operators. To make this possible, we let our parameters be complex (since it
is algebraically closed). This is easy to amend our 2-norm condition with the complex variant: we require
|a|? + |B]? = 1. Complex parameters also ensure a consistent uniformity in states: if we pick a random
uniform (specifically with respect to the Haar measure) qubit «|0) + 5]1), the corresponding probability
vector (Jal? |B|?) will also be uniformly distributed.

Definition 4.1 (Qubit). A qubit is a system described by parameters a, 3 € C such that |a|? + |3]? = 1
that outputs 0 or 1 with probability |a|? or |3]? respectively. A set of qubits are stored in memory in groups
with registers (similar to bits being grouped in bytes).

Mathematically, a qubit is a vector |[v) = (o 8) = «|0) + 1) in a 2-dimensional complex inner product
space with orthonormal basis {|0),]1)}. If a, 8 # 0, we say v is in superposition. Upon measuring a qubit
v, it returns |0) with probability |a|? and |1) with probability |3|%.

We can combine qubits exactly as one would imagine with classical bits. In a classical system, if we know
one bit has probability p; to output 0 and another bit has (independent) probability ps to output 0, then we
would expect to see the string 00 with probability p;ps. Qubits work similarly. Suppose we have a two-qubit
system, with the first qubit having state aq |0) + $1 |1), and the second one being s |0) + B2 |1), then the
two-qubit system is the tensor product

(a1 10) + $1 1)) @ (a2 [0) + B2 |1)) = a1c2 |00) + a1 82 |01) + Brag [10) + 5182]11) .

This tensor product represents having a 2-qubit state with one qubit concatenated with another, similar
to our 2-bit states in the classical sense with one bit next to another. We will suppress the ® often and
just write |@) [¥) = |¢) ® |¥). Also, for simplicity, we will combine the deterministic qubits together i.e.
|0) |1) = |01). Not all two-(or more) qubit systems can be written as a tensor product. The Bell/EPR state

1 1
ﬁ|00>+ﬁ|11>

is one such state. These are entangled qubits (the second qubit is inherently correlated to the first).

With all this spelled out, though, how are qubits fundamentally different from a probabilistic classical
bit that we assign probabilities |a|?, |3]? to its outcomes? The key lies in superpositions. They may seem to
describe a probabilistic classic (set of) bit(s), but since parameters are complex amplitudes, we can leverage
interference as we have seen above to try and “encourage” higher amplitudes and thus higher probabilities of
“desirable” outcomes while destructively interfering and cancelling the less desirable outcomes. This ability
to reinforce and discourage the set of outcomes all at once is what makes quantum computing better than
classical algorithms in some cases.

Remark 4.2. For completeness sake, all of this can also be rephrased in terms of a complex Hilbert space
equipped with the complex dot product. Our qubits are then elements of norm 1, with output states {|0), |1)}
(and other combinations if needed with an orthonormal basis of {|0),]1), -+ ,|N — 1)}).

4.2.2 So What? Quantum Parallelism is What

So, what is the point of all this? Say we have a function f : {0,1} — {0,1}. We will consider the map on two
qubits given by Uy : |z) |y) — |z) |y @ f(x)) where @ is XOR. This preserves the inner product between basis
states {]0) [0),]0) [1),]1) |0),]1) |1)}, so is unitary. What makes quantum computing interesting is how these
maps act on non-basis states. Now, suppose we do the following set of operations starting on the quantum
state |0) |0):

1. Apply the Hadamard map to the first qubit to create a uniform superposition: H |0) = %(|0> +11)).

20

2. Apply unitary Uy to the new combined state, noting Uy is linear:

1 1

ster 0y 100 = Uy (5 (10100 1010))) =5 (o) 700 + 10170)

Look what has happened. We applied Uy, and hence f, only once, yet we were able to put our two-qubit
system into a state that stores information about both f(0) and f(1). It is as if we calculated two values
of f with only one use of f. This is the illustrious quantum parallelism that makes quantum computing so
promising for algorithmic speedups. However, it should be noted that we are still working with probabilistic
superpositions. If we try to extract this data and measure the state, we get the collapsed state of either just
|0) | £(0)) or |1) |f(1)), a single value of f which any classical computer could have done. What we aim to do
later is exploit constructive and destructive interference to make this extraction useful.

Remark 4.3 (Partial measurement). It is worth noting we allow ourselves to partial measurement of qubits.
In the above case, we measured the whole system and every qubit to get either |0) |f(0)) or |1)|f(1)). Just
like in classical computing, we may just want to look at 1 qubit in memory instead of everything. We do this
since sometimes as partial measurement will only determine the qubits we measure, while possibly leaving
the others in superposition, allowing us to work with the rest as quantum states. Consider the following
2-qubit state:

1mm+1<m+]wﬁ:1M®(1(m+m0+jgwm

vz vz V2 V2 V2
If we measure the first qubit, and get |1), we know the second qubit must be |0). If we instead got |0) from
the first qubit, then we know the second qubit can still be either |0) or |1) with equal probability, so is still
in superposition. This is the key difference between partial and total measurement.

4.3 A Note On Quantum Time Complexity and Security

A key detail we need to address is how time complexity works in the new computing setting. Notably, since
quantum computing is inherently probabilistic, we need some way to formalize a computing class that takes
into account non-deterministic outcomes for deterministic problems. The efficient class of algorithms in this
setting are the bounded-error quantum polynomial time (BQP) algorithms [43][1]. This is similar to
the classical computing class of bounded-error probabilistic polynomial (BPP) time, which clearly
contains the class of polynomial time algorithms we were previously considering. Also, because of the nature
of superpositions, we will see that we can compute a lot in parallel on a quantum computer. Thus we need
a new metric for what an “operation” is in the quantum setting. These operations are typically defined
via elementary quantum gates, which as we have discussed are represented as unitary matrices. There are
universal sets of gates in which any other gate/unitary operation can be approximated (Section 4.5 [43]; in
the same vain from the NOT and AND classic logic gates, we can build any other logic gate). There are also
some special gates that are exceptionally expensive that we take extra care of [44]. For the purposes of this
survey, we will largely ignore the finer details in our complexity analysis, for we mostly want to show how
quantum algorithms can achieve polynomial time in the cases where classical ones have not yet.

We also need to adapt security thresholds, since quantum operations are not equivalent to the classical
ones. The notion of n-bit security was built off an idea of essentially relating the best attacks to an equiv-
alent brute force attack of the simpler one-time pad cipher. Unlike classical computers, however, quantum
computing hardware is extremely variable with too many factors that affect viability of any given algorithm’s
performance. This poses a major hurdle if we wish to standardize the security offered by quantum algorithms
in terms of the number of quantum operations or the quantum circuit size since implementation rarely will
mimic the theory. Not to mention, many attacks may use hybrid approaches that bridge classical and quan-
tum computers, further making such a security metric hard. NIST has set some “levels” of security standards
in terms of equal difficulty as breaking typical symmetric ciphers in both the classical and quantum settings
[39][41]. Roughly, n-bit quantum security translates to requiring both n-bit classical and (n/2)-qubit security
(as Grover’s quantum search algorithm offers a quadratic speedup for breaking symmetric ciphers).

21

4.4 1Is This Viable?

We have described qubits and their unitary transformations as a generalization of probability, but the
theory is not helpful beyond a curiosity if we cannot implement it in some way. Although this was an
abstract motivation, these notions were originally formulated in the context of the first quantum experiments;
superposition, unitary evolution, entanglement, etc. all have a physical origin. We implement classical bits
via transistors and their corresponding bit as the occupying voltage. We can implement qubits in the same
vein as their phenomena was discovered. We can take a photon (a la double slit experiment) and say it is
in state |0) if it is vertically polarized or |1) if it is horizontally polarized. Using polarized filters (like those
found in sunglasses), we can put photons into superposition by making them aligned along another axis.
There are other implementations, and the viability will vary, but all are relatively difficult due to the nature
of measuring qubits accidentally, and forcing superpositions to collapse unexpectedly.

5 Quantum Computing Threat
5.1 Shor’s Algorithm

The main quantum algorithm of concern is Shor’s algorithm. This is an algorithm that can solve not
just the discrete-logarithm problem, but also factoring and other important problems in cryptography (see
Section 5.5).

As an example, let us explore how Shor’s algorithm attempts to solve factoring (this is much simpler to
re-derive Shor’s algorithm than with DLP as our working example as we will see later; also integers being
the objects will concretize the abstract ones in Section 5.5 when we generalize). The idea is that we can
calculate ged(x, N) = d quickly, so if we can find a suitable x that makes d > 1, we will have found a
non-trivial factor of N; ged(x, N) acts as a filter for factors of N. Assuming we have a reasonably “hard”
number N to factor (i.e. is not even or prime power), we pick a random integer 2 < n < N. We can
quickly calculate ged(a, N) = d. If d > 1, then {d, N/d} are factors of N. If d = 1, then a is in the
group Zy and hence has multiplicative order a®(®) = 1 mod N i.e. N | a®® — 1. If o(a) is even, then we
can use the difference of squares N | (a®®/? — 1)(a®®/2 + 1). Since the order is o(a), N { a®®/? — 1.
If d = ged(N,a@/? — 1) > 1, we have found new non-trivial factors {d, N/d} of N. If d = 1, then
ged(N,a%@/2 — 1) =1 and ged(N, a®@/2 +1) = N so we learn no information about the factors of N and
must try again with a new a.

The important step here is determining o(a). Doing this classically is not known to be easy—it requires
either factoring the group size ¢(n), or just trying every possible value. The trick that quantum algorithms
take advantage of is considering the function f(z) = a® mod N. f(x) is periodic with period o(a). If we can
find this period, we have found o(a).

5.1.1 Why Do We Need Quantum At All?

Building on the last comment, it is worth pointing out that there is a natural suggestion: repeated trials
of Shor’s algorithm involves picking random a and calculating ged(a, N) = d. The algorithm continues as
described if d = 1, but instantly terminates if d > 1 giving us a nontrivial factor. So why not just skip the
quantum algorithm, and only calculate this ged, sampling random a every time? Well consider the hardest
possible numbers to factor: products of two primes N = pg. Our random ged(a, N) only succeeds if a is
not coprime to N. The numbers less than N that are not coprime to N are precisely the multiples of p and
q less than N (since they are prime) i.e. {1p,2p,---,(¢ — 1)p} and {1¢,2q,---,(p — 1)q} (also note these
are disjoint; any number that is a both multiple of p and of ¢ must be a multiple of pg). So the probability
of picking a viable a is % ~ 1/p+1/q. In RSA, we want N ~ 22048 at least, so we would have
p,q ~ 21924, So the probability of picking a viable a is around 1/2256 ~ 1/107". For reference for how small
this is, the probability of picking any particular atom in the entire universe is about 1,/10%°,

This explains why trying ged(a, N) directly is bad, but not necessarily why ged(a®®/2 — 1, N) is good.
This follows from two observations. First, if 22 = 1 mod N but x # £1 mod N, then we have N | 22 — 1 =
(x—=1)(z+1) and N { = 1. Hence the factors of N are split across z + 1 with neither containing N entirely

22

and so 1 < ged(z £ 1, N) < N, each giving a non-trivial factor of N. Second, suppose we are trying to
factor N = p{' -+ p}*. Pick uniform random a € ZY i.e. a coprime to N. Then P(o(a) is even and a®(®/2 #
—1mod N) > 1—1/2% (see Section 5.3.2 of [43]). This can be shown considering the Chinese Remainder
Theorem. Combining these two theorems shows that considering o(a) gives a high chance of finding non-
trivial factors of N.

5.2 The Quantum Fourier Transform

The problem of finding periods inspires the use of something along the lines of a Fourier transform. The
discrete Fourier transform (DFT) of a vector of complex numbers X = {zg, 21, -+ ,2xy_1} is another
vector Y = {yo, 41, - ,yn—1} of equal length with components

N-1

ik

Yk = § Ty 6271'sz
n=0

The idea of the DFT is to see given a period of N/k (or a frequency of k/N), how many times the data
aligns with itself (with the & = 0 term encoding the mean of the vector). Each yj tells us the amplitude
of the component of phase N/k. The more the data aligns with itself every N/k elements, the greater the
magnitude of yi. This naive implementation requires N additions per coordinate, so we can compute the
DFT in O(N?). In particular, if N = 2" (i.e. if we are working with coordinates of n-bits across all n-bit
strings), DFT runs in O(2%7).

The quantum Fourier transform (QFT) is exactly the same, only rewritten to fit the vector notation
convention; the DFT is written in terms of coordinates, while the QFT is written in terms of basis vectors.
On an orthonormal basis of {|0),]1),---,|N — 1)}, the QFT acts on the basis vectors as

N—
oFT,
In Z
k:

The \/% term is just a normalizing term so the output is also a quantum state vector. Hence by linearity,

2\:

the QFT acts on a general quantum state via

N-1
Z o [k) Z By, k) = \ﬁ Z (Z - eQﬂ'k}@) k)
k=0 n=0

In the QFT, the coefficient of the basis vector |k) encodes the DFT of the data for cycles of period N/k.

Proposition 5.1. The QFT is a unitary operation.

Proof. Note by the above formula, we can write the QFT as a matrix U = (u;;). Let w = e?™/N be the

primitive N-th root of unity, so u;; = % w(=DU=D Consider the product UU* = (a;, ;,). Then

N-1o T 1 N-1 ik - 1 N-1 1 N-1
) -k k— 2mi/N —27mi/N 2mik(j1—j2)/N _ k(j1—J2)
Ajy s = g Wit 5w32 E () (e) e E w
k=0 N N k:O kiO k=0

When j; = j2, we see a;,;, = %N = 1. When j; # jo, the sum on the right is a geometric series.

N-1 o iy
izwkm—h):i.M_l.M_
N N 1 — wir—J2 N 1—wit—i2

The last equality follows since w’¥ = 1 is an N-th root of unity. Hence UU* = I, and similarly U*U = I. O

So we are free to apply the QFT on our state vectors without worry. When we are working with n qubits,
we often consider the 2" dimensional space with orthonormal basis {|z) : = € {0,1}"} = {|0),---,|2" — 1)}.

23

Also, note with some algebra, we can rewrite the QFT in the following product form (Equation 5.4 [43]).
Let bin(k) = bibs - - - b, be written in n bits. Let 0.a1as---a, = a1/2 4+ as/4 + -+ + a,, /2™ represent the
fractional part of a binary number. Then

1

QFT(|k)) = QFT(Jb1 -+ bn)) = 5775

((‘O> 4 627Ti0'b" |1>) (‘O> 4 627ri0.bn_1bn |1>) (|O> 4 627ri0.b1~~-bn_1bn |1>))
Interpreted classically, this means for each of our 2™ coordinates we need to do n multiplications. So the
DFT can run in O(n2") = O(Nlog N) on a classic computer—a significant improvement over O(N?) (while
not necessarily in this form, this has equivalent runtime to the classical Fast Fourier Transform, or FFT).

Although we have described the DFT and QFT as equivalent, the major benefit of the QFT is being
able to transform superpositions all at once. The DFT requires us to compute each coordinate individually,
but by the nature of qubits and superpositions, we do not have to track each coordinate individually. The
physical system of a qubit inhabits a superposition that naturally tracks all the possible basis states and
hence DFT outputs at once; the superposition tracks the current output vector. This is seen most by our
product form: we create n superpositions (1 for each qubit. This is easy; i.e. with Hadamard matrix), and
then for the first qubit we need 1 phase-correcting operations to get the factor of 0.b,. We need two for
the second qubit to get 0.b,,_1b,, etc. So we need a total of n(n + 1)/2 phase corrections, and that is it!
We need O(n?) = O((log N)?) operations: a significant improvement over both the normal DFT’s O(N?)
and the FFT’s O(N log N) (although we only described it for basis states, this time complexity remains for
any arbitrary quantum state by linearity and quantum parallelism). These can be realized via a sequence
of unitary operations to decompose the QFT that we cannot do in a classical setting (i.e. with typical logic
gates/operations).

The downside is in that we cannot extract all the data of the QFT. Upon measurement of our superpo-
sition, we only get a qubit collapse with some probability. While the QFT does detect periodicities like the
typical DFT, we need to design algorithms around the QFT to make the specific outputs we get useful.

5.3 Phase Estimation

We are not quite in a position to use the QFT for our order finding problem. While we can technically find
periods over vectors, if we wanted to find the period and apply the QFT to the vector (a° mod N, a' mod
N,---,a* mod N), we have to first calculate all the powers of a® mod N to begin with (they would be our
coefficients, not our kets to apply the QFT to that vector). We would already know the period! And if we
use try to use quantum parallelism, we have the other issue of extracting the period data since measurement
only gives us only one and not all of the end states.

Phase estimation is the complementary algorithm that bypasses this issue. Recall unitary operators have
eigenvalues of modulus 1, i.e. eigenvectors |v) have corresponding eigenvalues of the form A = e*™. So in
a basis of eigenvectors, learning about how U acts on a vector w is equivalent to learning the corresponding
values of p. The idea of phase estimation is actually quite simple. Consider the following;:

1 N_l' J — 1 N_l- 2mijp _
VF WU = g5 3 e) = arNg) @

Since |v) is an eigenvector of U, the sum on the left becomes something that looks quite similar to our an
evaluation of the QFT on |Ny). So we can estimate ¢ by finding a way to compute these powers of U in
this way, and then take the inverse QFT. Phase estimation occurs in stages.

Set-Up: Let U be unitary and |v) an eigenvector of U with corresponding eigenvalue e*™*¢. We want to
estimate ¢ € [0,1).

Initialiation: We start with two registers |00---0)|v). The first register contains k qubits that are
initially in state 0. The second register is initialized with the eigenvector whose phase we want to estimate
|v) (stored with however many qubits we need to specify v). Since our algorithm will involve collapsing our
qubits to get an estimate, there will be some probability of success/failure. k is the parameter that dictates
how successful we will be both in terms of probability, and how precise our estimate will be.

24

Transformation: We apply the Hadamard matrix to each qubit in the first register:

00-- - ® \0 +11) | |v) = Z |bin(5)

where bin just converts the integer ¢ to its k-bit binary representation (we can write it without the binary
representation, but here it makes the cost of storage clearer). Applying the Hadamard map to our k qubits
in state |0) creates the superposition where all possible k-bit outcomes are equally likely (note: this uniform
superposition could have been alternatively achieved by the QFT on |0)).

Next, we apply the following unitary map that acts on the states as follows:
Ucontro1 ([bin(k)) [v)) = [bin(k)) ® (U* [v)) = [bin(k)) U* |v)

with the final RHS as a convenient abbreviation. This is unitary since its matrix is block diagonal, and both
the identity and powers of U are unitary (see the Appendix for it fully written out). The idea is that the
first register |j) tells us how times to apply U to the second register |v) (and the inclusion of the I blocks
ensures we do not disturb the first register’s qubits). This is known as a controlled-U operation, where the
state of some qubits (the control qubits) determines how many times we apply U to the second register (this
is often implemented via controlled-U?’ sub-transformations which can be easy to implement; note this also
means we need O(k3) quantum operations to compute the superposition of the sum of U7 below by using
fast exponent algorithms, and only needing the binary representation to expand each power). Applying it
to our superposition and noting that U |v) = €274 |v> as it is an eigenvector, we get:

2k 1 2k 1

1 vy o2
Ucontrol oG ZO [bin(i) [v) | = 3 /2 Z Ibin(j)) U7 |v) = 5 /2 Z Ibin(j)) e2™9% |v)
o

Estimation: Having applied U repeatedly, the phase ¢ has accumulated across the different qubit-states
in the superposition in the first register. Take a look at the first register again:

2k -1
27rijtp
Qk/2 E [bin(j)

This looks almost exactly like applying the QFT to the basis vector |p)! So we apply the inverse QFT to

our first register
2k —1

P
2k/2 Z [bin(j)) e*™¢ =— | P)

Looking at the formula for the QFT, the phase accumulated in the QFT for a corresponding basis vector
In) is n/N. ¢ might not exactly be a rational number of this form, so ¢ ~ 2¥¢ is an approximation of ¢. So
measuring this final qubit, we are likely to be returned ¢ with high probability and have an estimate of the
phase .

This makes it clear the roles of our two registers: the second register |v) is only there so evaluating
powers of U corresponds to scalar multiplication of the eigenvalue with the phase we want to estimate, and
k controls how precise of an approximation of ¢ we are likely to get.

5.3.1 Phase Estimation Accuracy

If ¢ can be written with &k bits, then we only need k qubits in the first register to get ¢ exactly. If we
cannot do this (i.e. not enough physical qubits to implement, ¢ is irrational, etc.), how good can phase
estimation be? It can be shown with some careful algebra on the inverse QFT that to estimate ¢ to k bits
with probability 1 — ¢, we need at least k + [log, (5= + 2)] bits in the first register (see Section 5.2.1 [43]).
As we will see later for our purposes, if we write the eigenstate |v) in our basis (i.e. as a superposition), we
often need roughly k£ qubits to also represent the second register. So our total number of qubits is ~ 2k.
Also note by the Spectral Theorem, computing powers of U is easy since we always diagonalize if needed.

25

5.4 Quantum Order-Finding

Back to Shor’s algorithm, we now describe a quantum order-finding algorithm. Determining o(a) = z in Z}
is equivalent to using phase estimation on the unitary operator

. ajmod N) if j <N
Ulj) = |.j) L
l7) ifj >N

with 0 < j < 2¢ where ¢ = [log, N is the number of bits needed to represent N in binary (this is unitary
since ged(a, N) = 1 so can easily show preserves inner product). Note since U* = I, that suggests that for
all 0 < k < x the following are eigenstates of U:

[ay

T—

1 iy)
|vk) = Vi & e”2TIMT a7 mod N).
These are eigenstates since
1 r—1 z—1
U vg) = 7 Ze—Zm‘jk/mU la? mod N = Ze—Qwijk/r la7+! mod N) = e2™k/= |y,
T
7=0 =0

and o(a) = x. Phase estimation allows us to recover k/z with high precision. The only issue is how do
we give an eigenstate of |v;) without already knowing 2?7 The solution is instead of doing a single phase

estimation, we do many in parallel via superposition since (let w = e~27%/%)
1 r—1 1 r—1 1 r—1 1 rz—1z—1
—Z|vk>:—z —Ze_%ijk/ﬂaj mod N) :fZijk la’ mod N) = |1)
! Vo= \ Ve 5=0 T =0 =0

and Zi;é w* =0 for j # 0. |1) is much easier to prepare in a physical system. So we let the second register
of phase estimation be |1) (written in ¢ bits). Let ¢ be the associated phase for |vg), phase estimation
returns something that looks like

1 i phase estimation 1 ik
0)%% 1) = 0)** (> |vk>> T = > 1) k)
\/E k=0 \/E k=0

Measuring the first register gives a 1/z chance to return any of the |¢y), each of which returns 2 (k/z) with
high probability (and thus dividing by 2% gives us k/z). (Note we often use L = 2/ bits in the first register
to obtain high accuracy phase estimates)

The estimation (@ /(2%) ~ k/z may not exactly return a rational number, or it may be rational but lose
factors and make x hard to recover (if z = 4 and k = 2, having 1/2 does not give us useful information
about z alone). Hence we use typical methods from number theory to approximate (¥ /(2%) it as rationals,
and take repeated trials of the order-finding method above to corroborate the data and recover . Though,
Shor’s original analysis shows the probability of success after just one trial is bounded below by 4/72 ~ 0.405
[52] [17]. With some additional classical post-processing, the success of a single run can be further improved
[23]. Heuristically this makes some sense when considering this is the same order of probability of picking
two coprime integers (see the Appendix).

Shor’s Algorithm for Order-Finding: Given a such that ged(a, N) = 1 and above unitary U, find
minimal z such that ¢ =1 mod N.

1. Initialize two registers, the first one with L bits: [0)®" [1).

2. Apply the Hadamard map or QFT to the first register to create a uniform superposition:

®L LQL_l , :LZL_l ; iz_l v
0) |1>H\/2—LZ\J>|1> \/272|]><\/5]§|k>>

J=0 J=0

26

3. Apply U to the second register in accordance to the first register via Ugonsror:

2l _12-1 2l 121 2l 121

1 , 1 A 1 omijk/@ | -
Ucontrol \/ﬁ Z Z|J> |Uk> = oL Z Z|]> U’ |Uk:> = \/1‘2711 Z Ze K/ ‘]> ‘Uk>

=0 k=0 =0 k=0 =0 k=0

4. Rearrange, and apply the inverse QFT to the first register to extract the phase:

2l

N e) o S 0k) o
\/EZ \/27; 19) ‘k>*—>ﬁk§‘2 (k/)) |vk)

k=0

5. Measure the first register to obtain the approximation of the phase 2¥(k/x), and divide by 2% to obtain
the phase k/z.

6. Repeat as needed to determine x.

5.5 Quantum DLP and the Hidden Subgroup Problem

We spent the time exploring Shor’s algorithm for factoring and hence know how to break RSA, but our
primary concern has been elliptic curves and the discrete logarithm problem. If we can find a similar
“period-finding problem” for DLP, we can easily adapt our algorithm.

Say we are trying to solve ¢g* = h in the finite group G of order |G| = p. Instead of considering
f(x) = a®* mod N, for DLP we might consider the function f(a) = g®h~!. But g is a generator, so has
period p which we already know; this does not help us in anyway. So we consider the more general function
f:Zy,xZ, — G defined by f(a,b) = g*h~% = g®=°*. Since g is a generator, f(a,b) = f(a’,?) if and only if
a—br =da —bVrmodpie a—a =x(b—0b) mod p. So f has a “periodic” structure that is not 1-dimensional
like with factoring above, but rather has a 2D period embedded in a lattice. Our equivalence above shows
f(a,b) = f(a',v) whenever (a/,0") = (a,b) + a(z,1) + S(p,0) (with the § term given by the order of the
group is a trivial period). In other words, the lattice of periods is spanned by Z-linear combinations of
((x,1), (p,0)). This is what Shor’s DLP algorithm would try to find: this nontrivial basis of the lattice.

In particular, factorization and the discrete logarithm problem’s “periodicities” are two realized instances
of the hidden subgroup problem. Instead of specifying the DLP implementation directly (see Section 5.4.2
[43] for one possibility), we now describe the generic Shor’s algorithm for finding hidden subgroups.

Definition 5.2 (Hidden subgroup). Let G be a group, H < G a subgroup, S a set, and f : G — S a function.
We say f hides the subgroup H if f is constant on the cosets G/H i.e. f(g1) = f(92) < g1H = ¢g2H.

In essence, we lose the specific structure of each coset, reducing them to just their representatives; the
action of H on G becomes indistinguishable to f. A more concrete way to think about this hiding is in how
f maps H: f(h) = e for all h € H; H and all the structure with it gets reduced to the trivial element.
We see this particular behavior with the First Isomorphism Theorem: given a homomorphism between two
groups ¢ : G1 — G2, we have G1/ker ¢ = im ¢. The idea is that ¢ naturally hides ker ¢, so we can induce
an injection by quotienting out ker ¢ and making these elements effectively the same. But in the process, we
lose the information about ker ¢.

Hidden Subgroup Problem (HSP): Given a group G, and a function f : G — S that hides H < G, find
a set of generators for H.

Example 5.3 (Factorization as HSP). Above, given an integer a such that ged(a, N) = 1 we reduced
factorization to finding the order n = o(a). We can reformulate this as an HSP: let G =Z and f : Z — Zy
via f(x) = a® mod N. Since f(z+n) = f(z), this is constant on the cosets of H = nZ in Z. Hence the goal
is to find n since (n) = nZ.

27

Example 5.4 (DLP as HSP). Let g be a generator of a group G with order p, and we want to find the
minimal z such that g* = h. We consider the function f : Z, x Z, — G via f(a,b) = g°h~" = g% As
discussed, this has period (z,1):

f((a,b) + (x,1)) = glata) =) _ gagep—bp—1 _ gapp=bp=1 _ gap=b _ £(a,b)

So we let H = ((z,1)) = {(kz,k) : 0 < k < p}. Hence the goal of this HSP is to recover the generator (x,1).

5.5.1 QFT on Finite Abelian Groups

If we are going to use the QFT in a general circumstance, we need to clarify what that means in a non-
obvious/-integer context. Fortunately, there is an obvious analog to the cyclic group Zy. Let g € Zn, then
the QFT of g is

2

QFT(|g)) Z I |k)

By the Fundamental Theorem for Abelian Groups, every finite abelian group can be identified as the direct
product of cyclic groups Zy, X --- X Zy,, so in general we can represent a group element as k registers each
of length [log N;]|, apply the QFT to these k different registers individually, and then tensor them together.
So whenever I write |x(g)) = QFT(|g)) as shorthand for QFT, it is meant to refer to the above formula in
Zn (or its relevant direct product) applied to the element g is isomorphic to.

More generally, we define the Fourier transform of a function on a finite abelian group to map a function
[+ G — C to another function f : G — C where G = Hom(G, C*) is the set of homomorphisms from G to
C*. The elements y € G are called characters of G and together form the dual group of G. The formula is
given by

F) \/I?Zf

geG

(Usually, we use the conjugate instead of x, but it just changes which is used in the inverse; they produce
identical results.) If G = Zy is cyclic, then G = G via the map a — Xa Where xq(z) = eQmax/N, we may
write f(g) = f(xg) as shorthand. If we let f(g) = g, we end up with the formula above, and the general
QFT/DFT we stated earlier. In particular, the relationship looks like

DFT([f(O)vf(1)7f<2)’ 7f<N)]) = [f(o)af(l)af(2)7 3f(N)]

Because of this isomorphism in cyclic groups, we will often just write this in terms of group elements repre-
sented by integers, and combine them via direct products for non-cyclic abelian groups via the Fundamental
Theorem for Abelian Groups.

Remark 5.5. There is an even more general Fourier transform on any finite group involving representations.
The Fourier transform of a function f : G — C at a representation p : G — GL(C) is f(p) = >gec f(9)p(g).
In the case of cyclic group Cny = Zy, the (1-dimensional, so scalar instead of matrix) representations we
consider are our characters x,(x) = e?max/N - Conceptually, our normal DFT /QFT is asking, “How much
of frequency x is in our function?” In the group case, we are asking, “How much of representation p is in our
function?”

For a subgroup H < G, we define H- = {xy € G : x(h) = 1 Yh € H} < G. Again, because of the
isomorphism in cyclic groups, we may equivalently write H+ = {¢ € G : x4(h) = 1 Yh € H} < G. We
introduce these to note a simplification of the Fourier basis for hidden subgroups. In particular,

f(g ZXZ

ZeHL

where my full derivation can be found in the Appendix. (It will be useful to note |H*| = |G|/|H|. Consider
the homomorphism ¢ : G — H via x — X|zz- Then ker¢ = H*, so by First Isomorphism Theorem,
G/H+ = H. Finish with G 2 G and H = H.)

28

Generic Shor’s Algorithm for Abelian HSP [9]: Given an input of abelian group G, and a function f
that hides a subgroup H, output H.

1. Initialize two registers |0) |0), where the first register’s basis states are elements in G, and the second’s
are in S (the set f hides H in).

2. Apply the QFT to the first register to create a uniform superposition over the group elements (note
Xo(G) = {1}, and the function in the Fourier transform description is the identity in this case):

10)10) HfZIQ

geG

3. Apply f to the second register in accordance to the first register with a unitary operator Uy:

\MZIQ WZ\g 1£(g)

geG geG

4. By the above, write f(g) = /- ‘G ZZGHL xe(9)f(0):

\mZIg 1f(9) mZ ZW

geG geG eeHL

5. Apply the inverse QFT to the first register.

FT— |H
xe(9) o) | 17 (0)) F— 101 £(0)
@ 2 |\ s @ 20

6. Measure the first register to obtain a random ¢ € H~+, which gives information on H.
7. Repeat steps 1-6 until H can be determined via the linear relations of H+.

Note, that although we need to know H to be able to do the rewriting in step 4, the rewriting is just an
equality; we do not actually change the second register, but rather put it in a form that is illustrative why
the inverse QFT should return something useful. A bigger problem is step 3: how do we get |f(g)) as the
second register in step 37 The idea remains the same as we did in Shor’s algorithm for factoring: represent
f as an efficient-to-calculate unitary operator (for factoring, that was repeated modular exponentiation). In
fact, rewriting f in terms of f is a similar reason why we started with |1) in the factoring case (it was just
more clear there where phase estimation’s eigenvalues came from in that case; in fact, similarly the Fourier
basis states are eigenvectors of the cyclic group operator). It is not quite the same, but the motivation is
the same: introduce terms to get a Fourier-like expression. The trick lies in the fact that because f hides
H, its Fourier transform collapses onto the cosets G/H. To see a perhaps more clear iteration of this “coset
collapse”, see another derivation of Shor’s algorithm for HSPs in the Appendix.

Remark 5.6. This above general formulation highlights why we especially needed phase estimation and
to specify the size of the first register to approximate the order when solving factorization from before:
the group we were hiding information in was Z, which is infinite. So we naturally needed to truncate our
algorithm somewhere to stop searching; we only have a finite number of qubits to create superpositions.

5.6 Time Complexity Analysis

We need at least log(|G|) bits in the first register to represent every group element uniquely. As discussed,
then the QFT runs in O(log(|G|)?) operations. We then need one call of the unitary f, which we assume we
can compute in some polynomial time p(log|G|) (since if we could not, our hopes of solving HSP are doomed
anyway). Finally, note that the size of a minimal generating set of H is at most log(|H|) < log(|G]).

29

Proposition 5.7. Let H = (hy, -+ ,h,) <G, and g ¢ H. Then |(H, g)| > 2|H]|.

Proof. Since g ¢ H, we have H and gH are distinct cosets, both contained in (H,g). Hence |(H,g)| >
|HUgH|=2|H|. O

A corollary of the above is that we can find a generating set of a group G with no more than log(|G|) elements.
As it turns out, we do not expect to need many more iterations than this [46] to obtain a generating set.
Since |H| = |G|/|H|, we need roughly log(|G|/|H|) < log(|G|) iterations to reconstruct H- (and so H)
with high probability. Hence, the overall complexity is O(log(|G|)(2log?(|G|) + p(log |G|))) which is often
dominated overall by O((log|G|)?) when evaluating f is cheap (else it is still polynomial in log(|G|) which
all we care about). This is a significant speed-up to not just factoring, but discrete logarithms, and many
other thought-to-be-difficult-to-solve problems.

5.7 Impact on Classical ECC and Immediate Timeline

At the moment, we do not have to be all that concerned about the use of classic elliptic curve cryptography.
Recall to provide 128-bit security, we need to use an elliptic curve over a field of prime order around 256 bits.
Directly from our previous analyses, for our phase estimation-type procedures to be remotely accurate, we
would need at least log |Z, x Z,,| = 2log |G| qubits in the first register, and log |G| qubits in the second register
(since our f hides H in G for DLP). So we would need at least ~ 768 qubits just to formulate the problem
on a quantum computer—this does not even include the machinery necessary to carry out the quantum
arithmetic, or unitary operations. Estimates have ranged based on implementations that to solve ECDLP
specifically with a Shor-like algorithm would require between roughly 6n [49] and 9n [50] qubits (where
n = [logp]| of the field F), used i.e. n is the number of bits needed to represent the order of the field and
hence elliptic curve group). So for 128-bit security with a 256-bit order field, we would need roughly between
1500 to 2300 qubits (with the latter being a stronger estimate for they simulated the implementation instead
of just writing the theory). In fact, the specific implementation matters a lot. Recent estimates suggest only
around 2n [7] to 3n [27] qubits are needed to factor an n-bit number (but likely more for actual efficient,
error-free implementation). Even more concerning, some HSPs have yet to be implemented efficiently even
on quantum computers, such as the graph isomorphism or shortest vector problems [9][43].

Moreover, these estimates are idealized logical qubits that are error-free, treated with the theoretical
perfection and precision that physical implementations just do not offer [49]. Due to the probabilistic nature
of qubits (and just their volatile, fragile nature), we need some number of physical qubits to error-correct one
another to produce the nice behavior our theory desires. Correcting for errors (caused by the environment or
manipulation) is not obvious either, since while in classical computing we only have bit errors (i.e. a 0 gets
flipped to a 1), qubits can have infinitely many, continuous phase errors. Even if qubits look close together
in phase, the small difference can add up over time resulting in large output errors. Handling these is tricky,
especially since we cannot measure/read qubits without disturbing them and having them collapse |21], and
it is in fact impossible to duplicate quantum data to create the redundancy we might expect to need in these
correcting codes (i.e. the no-cloning theorem) [28][1][43]. In fact, these errors are such a problem, attempts
to factor the number N = 35 with one implementation of Shor’s algorithm in 2019 succeeded only 14% of
the time due to the cumulative error build up [4].

There are some short, effective correcting codes, like the Steane code, that can mimic a logical qubit
with 7 physical bits in a manner similar to the classical Hamming code [21][43], but for truly effective,
large scale computations (i.e. can account for errors in the error correction systems; satisfy the threshold
theorem [43]), modern codes estimate the need from 1000-10000 high quality physical qubits/hardware (i.e.
maintain coherence for extended period of time; introduce a qubit error rate is less than 1%, etc.) [25][27].
So conservatively, we would expect at least 2300 - 1000 == 2.3 - 10% physical qubits to break ECDLP in a field
of order 22°. As of now, the most powerful quantum computer in terms of sheer number of qubits is IBM’s
Condor processor that has 1121 physical qubits, with many commercially available and in use processors
being no more than a couple hundred qubits [26]. However, scaling these quantum processors is at the
forefront of quantum computing research, and Microsoft just announced their Majorana 1 chip in February
2025 that promises to scale up to 1 million qubits [12].

30

At the moment, many expect to have a significant chance of quantum computing powerful enough for
cryptographic applications by the early 2030s [33][58]]|16]. For ECC in particular, though, quantum comput-
ing is especially concerning since we already use small parameters in the classical computing setting. Despite
factoring and DLP/ECDLP have significantly different time complexities to break on classical computers,
they have approximately the same time complexity in the quantum setting, so the smaller parameters for
equal security levels for ECDLP in the classical setting lend themselves to smaller qubit requirements in the
quantum setting. As such many expect ECC to be broken by quantum computers before RSA /factoring [50]
[27]. But for the time being, until we have significant optimizations or developments of quantum processors,
classical computers seem to be the best option at this scale [61][29]. We are safe for now.

6 Post-Quantum Elliptic-Curve Cryptography

Despite quantum computing being a relatively far out threat, we cannot wait until the field realizes its
capabilities as actual processors to design safeguards against them. With Shor’s algorithm in place even in
concept, the task at hand now is to find a cryptographic scheme that is also resistant to quantum attacks.

6.1 Isogeny Graphs

Quantum computing’s biggest upsell has been in its use of superpositions and quantum parallelism, in a
way “trivializing” computing the group operations, and finding the relevant generators of our subgroup and
leveraging the abelian structure of the group. This suggests a sort of structural shift in our cryptographic
protocols: we look for problems that are algorithmically hard not because of the group structure, but
because of the algorithm itself; if we wanted to focus on a particular group structure, we would need to
at least supplement it in some way to fundamentally shift away from the original group. Classical ECC
is fundamentally flawed in that the way it is set up does not directly allow for direct application to post-
quantum methods, but we can still adapt the tools we have found along the way to create new schemes.
One such solution is isogeny based cryptography, where we focus not on the relationships between points on
an elliptic curve, but rather relationships between elliptic curves themselves; we look at how many groups
interact instead of sticking to just one group.

6.1.1 Additional Mathematical Background

For the sake of brevity, clarity, and applicability to cryptographic methods, the math above was taken as
concretely as possible; I made an active attempt to bridge the tangible equations as used in [62] and the
more isolated theory as found in [56][55]. We have been able to largely avoid the abstractions that textbooks
dedicate hundreds of pages to the completeness of the study of elliptic curves, all in the interest to stick
to our specific goals. It is probably not surprising that to create the methods that can evade the quantum
threat, we have to elevate our sophistication a bit. As such, by nature of our previous discussions and the
need for new tools, we will mention and source out results as we need, and briefly touch on intuitions if
available. Of course, we have already done this a bit with dual isogenies, and the elliptic curves specific
converse to the First Isomorphism Theorem. In this case, we just need to do it a bit more.

Before we begin, we first simplify our discussion of elliptic curves. One way we can do this is try and
find equivalence classes of elliptic curves to group them together. One equivalence class we could define is
two elliptic curves F; /K, E5/K are equivalent if their groups are isomorphic F;(K) = Ey(K) (and following
from before, this isomorphism is given by rational functions; when such a group isomorphism exists, we say
the two curves E7 /K, F5/K are isomorphic). This is a perfectly correct characterization to use, and follows

the group structure we want.

To have an isomorphism, we critically need it to preserve the group law. The group law is defined via
the geometry of some lines, so in particular, we need lines to map to lines, hence it is linear. Secondly, we
mentioned how every elliptic curve equation can be put into Weierstrass form after a change of variables, so
we will skip that step and just ensure that our map preserves the Weierstrass form. Consider an arbitrary

31

linear map (x,y) — (s + ty + u, pr + qy + r). Applying this to a general Weierstrass equation:

V=23 tar+b— (prtqy+r)?=(sx+ty+u)’+alse+ty+u)+b

(px 4+ qy +7)* = (s +u)® + a(sz 4+ u) + b
p?x? + 2pqry + 2pra + ¢?y? + 2qry + 172 = 223 + 35Pua? + 3sulz +ud +asz +au+b

We do not want cubic terms outside of 23, so t = 0.

We need to eliminate the xy term: 2pgry = 0. ¢ # 0, since that would make our transformation only
a function of x and hence not injective (since if (r,y) € E, then so is (z,—y) € E) and hence not
bijective. So p = 0.

We need to eliminate the y term: 2¢ry = 0, and since ¢ # 0, we have r = 0.

We need to eliminate the 2% term: 3s?ux? = 0. s # 0 (else not invertible), so u = 0.
Py =52 +ase+b

3 1/2

We need the lead coefficients « ¢%> = 5% so we can normalize them to be monic. So we need ¢ =
p'/3 for some non-zero p € K. In particular let g = X6, s0 ¢ = A3, 5 = A2.

7S:

Hence all isomorphisms are of the form (z,y) — (\2x, A3y), mapping the curve y?> = 23 + az + b to
(v)? = (2')% + d'(2') + b where a’ = Aa,b’ = A\b. This can easily be verified this does in fact give an
isomorphism, though our assumption preserve that; our map essentially scales the Weierstrass equation by
A8, For a more rigorous proof, see [62], [55]. We took an algebraic property concerning points on the equation,
and deduced a geometric equivalence in terms of the overall curves themselves. Treating isomorphism classes
as curves related by this change of variables, we can construct a concrete algebraic invariant that categorizes
these classes. In particular, for any isomorphism class, for every elliptic curve E in the class, the quantity

4q3

(E) = 1728——+
I(E) 4a3 1 27D2

remains invariant (we take j(E) € K reducing 1728 mod Char(K)). We hence call this the j-invariant of E.

Remark 6.1. These may seem arbitrary or random, but the theory of elliptic curves is wide and varied.
The results we have derived thus far try to contain themselves as computational tools, since those are the
most useful for cryptographers. But the basis for the theory lies in an intersection of complex analysis and
abstract algebra with far too much additional background outside the scope of this essay. In particular,
the j-invariant is borrowed from the complex analytic view with modular forms and are from where the
seemingly arbitrary coefficients arise.

Remark 6.2 (Twists). As before when we defined isogenies, we are working in the closure K, and as such
we may find scalar for our change of variables such that A € K\ K. This would leave (x,%) — (\2x, \3y)
mapping K-rational points to non-K-rational points that are not on F5(K)! Curves that are isomorphic over
K but not K are called twists of one another. The degree of the twist is the least integer n it takes for A" € K
i.e. a quadratic twist would be one where A € K but A\? € K. Twists create interesting uses and attacks in
the classical setting, but for the time being, will only impact our implementations in the quantum setting.

Remark 6.3. Note that for all j € K\ {0,1728}, we have that
3J 2j

Ei:y? =2
Y ST s T iR —

has j-invariant j(F;) = j. For the other two cases, we can pick Ep : y*> = 2® + 1 and Ei79s : y? = 2° + 2.
In particular, this is an elliptic curve defined over K. So for any elliptic curve E/F with j(E) = j, it is
isomorphic to E; and hence can move between the £ and E; via a change of variables. This might seem
sketchy given we have defined F over a field F and j € K and it is not necessarily that K = F. However,
our notions of isomorphism asks to check over the closure of the base fields, so we are still in the clear with
this change of variables. Existence of such a twist via E; will be important when trying to standardize
implementing curves.

32

We complete this characterization of the isomorphism classes with the converse of the j-invariant.

Proposition 6.4. Let Ey, Ey be elliptic curves. Then Ey is isomorphic to Es if and only if j(E1) = j(E2).

Proof. |62] The forward direction we discussed and is easy by inspection of the change of variables. The
converse is easy: assume equality, check the cases for when j(E) = 0 and j(E) # 0, and since we are working
in the closure K, we can pick a suitable value \. O

Considering curves over isomorphism, we identify classes with this convenient j-invariant quantity. Going
back to our motivation, we want to “connect” these isomorphic curves. Isogenies naturally do that, as note
that the relation of being isogenous is an equivalence relation on the isomorphism classes (isomorphisms are
degree 1 isogenies as given by our change of variables, and so composing them with any isogeny of degree ¢
is also an isogeny of degree ¢). We hence define the following:

Definition 6.5 (Isogeny graph). An isogeny graph is a (multi)graph with our nodes as j-invariants and
edges connecting isogenous curves.

Remark 6.6. Since dual isogenies guarantee the existence of same degree isogeny in the reverse direction,
we often draw these undirected.

Remark 6.7. On first glance, this graph should be trivial—we said isogenous curves form an equivalence
relation and hence the graph should be complete. We will often restrict specifically to isogenies of degree ¢,
instead of being isogenous in general.

6.1.2 Supersingular Elliptic Curves

We turn our focus to supersingular elliptic curves. Recall the definition of supersingular elliptic curves. We
give a more general characterization based on E[p] := ker([p]).

Proposition 6.8. Let K be a field of characteristic p, and E /K be an elliptic curve. Then either E[p] = Z/pZ
or Elp) = {oo}.

Proof. [55] Let ®, be the p-power Frobenius endomorphism. We use a combination of results involving the
dual isogeny and the relation | ker(®,)| = deg,(®,):

|Elp]| = |ker([p])| = deg,([p]) = deg, (P, 0 ;) = deg, (D)

noting that @, is inseparable. Recalling that deg(‘i)p) = deg(®,) = p, we have two options to consider. If

deg (®,) = 1, then |E[p]| = 1, giving us the second conclusion. If deg (®,) = p, then |E[p]| = p, and so it
is cyclic and E[p] & Z/pZ. O

Definition 6.9 (Supersingular vs. ordinary ellitpic curve). Over a field K of characteristic p, an elliptic
curve F /K is supersingular if E[p] = {oo} is trivial, and say it is ordinary otherwise i.e. E[p] = Z/pZ.

This is a fundamental divide among elliptic curves, and the distinction arises frequently.
Proposition 6.10. Let Eq, E5 be two isogenous elliptic curves over a field K of characteristic p. Then Ey

is supersingular if and only if Es is.

Proof. Let ¢ : B1(K) — E»(K) be our isogeny. Let [p1], [p2] denote the multiplication-by-p endomorphisms
on Ei, E5 respectively. Then note [pe]ogd=¢d+ ¢+ -+ ¢ = ¢ o [p1]. Comparing (separable) degrees:

deg,([p2] 0 ¢) = deg, (¢ o [p1])
deg,([p2]) deg,(¢) = deg,(¢) deg,([p1])
deg,([p1]) = deg,([p2])
(

| ker([p])] = [ker([p2])|
|Elpal| = |Ep2]|

33

So E; is supersingular if and only |E[p;]| = 1 if and only if |E[ps]| = 1 if and only if E5 is supersingular. [

In particular, the above tells us we can never have an isogeny between supersingular and ordinary curves,
and so our isogeny graphs will be similarly divided only containing one type of curve. Ordinary graphs
and supersingular graphs have distinctly different structures, so for the time being, we restrict attention to
supersingular curves.

Theorem 6.11. Let E/K be a supersingular elliptic curve over a field with Char(K) = p. Then j(E) € Fe.

Proof. Since E is supersingular, 1 = |E[p]| = |ker([p])| = deg,([p]) = deg,(®, o ®,) = deg,(®,), so &,

is purely inseparable. So decomposing i)p . E®(K) — E(K) into its separable and inseparable parts,
d,=4¢o @}, where @), : E®(K) - E(pz)(K) is the Frobenius map on E®) and 1 : E(pZ)(K) — E(K) is a
degree 1 separable isogeny (i.e. an isomorphism; note to match degrees, we need only one composition of
®},). Since 7 is an isomorphism, J(E®)) = j(E). Since j(E) € K,

2
A(a?")? 4a® P 2
i(E)=j (E®)) = 1728 = (1728—"2) =j(B)
i(E) = () A(aP)3 + 27(b7°)2 4a3 + 2712 IE)
Hence j(E) € F)2 (again by considering the definition/construction of finite fields F,x from earlier). O

So there is a type of uniformity among our supersingular curves; regardless of the field we are working
in, we can reduce all of our calculations of our isogeny graphs to F,.. Since we only care about curves
up to isomorphism, we can choose the twist representative E;/F,2 of our isomorphism class denoted by its
relevant j-invariant. Also, this tells us there are only finitely many distinct j-invariants and thus finitely
many supersingular elliptic curves up to isomorphism. This importantly bounds the size of isogeny graphs
for supersingular curves. In fact, we can make this much more precise.

Theorem 6.12. Let K be a field with Char(K) = p > 5. Then there are

0 ifp=1modI12
H%th 1 ifp=5,7mod 12
2 ifp=11mod 12

distinct supersingular elliptic curves over K up to isomorphism.

Proof. See Corollary 4.40 [62] or V.4.1(c) [55] for the complete proof. Let E/K : y?> = f(x) where f(z) is a
cubic in Weierstrass form with distinct roots. The idea of the proof is to create a criterion of supersingularity
of E by considering the coefficient of 2P~ in f(z)»~1/2, and then hence an equivalent formulation in terms of
the roots of a polynomial H,, representing this coefficient of zP~!. Thus counting the number of supersingular
curves reduces to counting roots of H, and adjusting for potential special ordinary cases. O

So the size of our graph grows linearly with respect to the characteristic. We now make our first obser-
vation of the edges of the isogeny graph.

Theorem 6.13. Let E/K be an elliptic curve over a finite field K with Char(K) = p. Let £ # p be a prime,
then there are £ 4+ 1 distinct isogenies of degree £ with domain E over K.

Proof Sketch. We sketch the idea without introducing too much more technology. Since ¢ # p, and in
particular p 1 £, all degree £ isogenies are separable (by comparing the degrees in their isogeny decomposition).
We use the fact that for any finite subgroup G < FE(K), we can compute a unique separable isogeny
¢ : E — E/G with ker ¢ = G. Separability implies |G| = |ker ¢| = deg ¢, so to count all isogenies of degree
£, we count the number of subgroups G of order ¢. But since ¢ is prime every point in such a subgroup would

have order ¢, so G < E[{], and can restrict to counting subgroups of E[¢].

34

It is easy to see for similar reasons above that [¢] is separable since deg([l]) = ¢2. So |E[{]| = deg([{]) = (2,
and by analyzing the structure of this finite abelian subgroup, see that E[¢] = Z /{7 x Z/{Z since every non-
zero element in E'[¢] has order ¢. Every element in E[/] is of order ¢, and each cyclic subgroup contains ¢ —1
non-zero points. Hence there are |E[(] \ {0}|/(¢ — 1) = ({2 —1)/(f — 1) = £ + 1 subgroups of order ¢, and
thus that many isogenies as well. O

Remark 6.14 (Vélu’s Formulas). It is worth mentioning that the above result of determining isogenies
from subgroups is not left to be existential. Vélu’s formulas [55][19] allow us to actually compute the unique
isogeny. It is a classical algorithm that runs linearly in the degree of the isogeny being computed, but
optimizations to have it run asymptotically in the square root have been found too [11].

Recall Hasse’s bound: ||E(F,)| — (¢ + 1)| < /2¢. This is not the complete formulation of the bound. In
particular, Hasse’s bound, as seen in our proof of it, is intimately connected to the Frobenius map ®,. The
full statement of Hasse’s bound is |E(F,)| = g + 1 — t where [t| < \/2q is the trace of ®,. The trace and
(and corresponding determinant) of ®, come from viewing ®, as essentially a 2 x 2 matrix with the Tate
module, and computing the trace and determinant as you would with any matrix. Subsequently, ®, comes
with a corresponding characteristic polynomial: xs, (z) = 22 —tx + ¢ (Theorem 2.3.1 [55]). More generally,
if we let «, 8 € C be the roots of x, (), it can be shown that [E(F4)| = ¢" +1 — (o™ + 3"). For us, the
important cases with supersingularity gives us that p | t = a+ 3. For ¢ = p?, we have that |t| < 2\/1? =2p
i.e. t = +2p, +p,0 depending on the specific prime p. See [38][63] for further discussion.

Proposition 6.15. If E/F 2 is a supersingular elliptic curve with p chosen such thatt = £2p with t described
above, then E(F,2) =7Z/(pF1)Z x Z/(p F 1)Z.

Proof Sketch. Let ®, denote the g-power Frobenius map. If ¢t = £2p, then by the characteristic polynomial
and the Cayley-Hamilton theorem, <I>]202 + 2p + p? = (®,2 £ p)? = 0. So in particular, ®,2 = [Fp| as
endomorphisms. But note, ®,. = [1] also as an endomorphism for E(F,2). So in particular, [1 ¥ p] = 0
as maps for these supersingular curves i.e. E(F,2) C E[1 &+ p|. We get the other containment with our
proposition from before: for a point P € E(F,2), P € E(Fp2) <= ®,2(P) = P. So using the exact same
equivalences, 0 = [1 F p|(P) = P F [p|]P = P — ®,2(P). So E[1 Fp| C E(F,2). O

Knowing the above is a key step in understanding the isogeny-based protocol we will consider later, for it
greatly simplifies the group structure. The final observation we make is that the isogeny graph is connected.
We make use of the following;:

Theorem 6.16 (Sato-Tate). [5][19] Two elliptic curves E1/K, Es/K are isogenous over K if and only if
|E1(K)| = |E2(K)| (note, this is over the base field, not the closure).

Remark 6.17. To be isogenous over K means that our rational functions ry(z),r2(x) defining our isogeny
takes coefficients in K as opposed to K like our definition stipulates.

Proposition 6.18. All supersingular elliptic curves over Fp2 are isogenous.
Proof. |64] We divide the cases into the possible values of ¢ and calculate the corresponding roots «, 5 of
X, (x) = 2% — tox + p2.

et=42p — 2> F2r+p’=(zFp)?=0s0oa=p3=+p

2__ 2 . .
et=+p— a2 Fpr+pP=0s0q,f= LVIW) EIEVE _ 4, cin/3

ot=0—22+p>’=0s0a=—3=ip.

In any case, a'? = 2 = p'2. So considering our elliptic curve groups over F(p2yi2 = Fpea, we have
|E(Fp2a)| = p** +1— (a? + ') = p** +1—2p'2. This quantity is independent of F, and since every elliptic
curve over [F2 C I, 24, by the Sato-Tate theorem, every supseringular curve over . are isogenous. O

35

So every supersingular elliptic curve is isomorphic to one in Fp2, and are isogenous over Fipz D [Fp24. So
the general isogeny graph is not only complete (and so connected), but also includes all supersingular graphs
over a given field. More importantly for us, we have the ¢-isogeny graph is connected.

Proposition 6.19. The graph of supersingular elliptic curves over F,2 with vertices as j-invariants and
edges as £-isogenies is connected.

Unfortunately, the proof of this theorem far exceeds anything we have discussed so far, requiring explicit
graph theory. There is no easy way to decompose the general existence of an isogeny ¢ from our above result
into a series of compositions 1 o - -- 0 9, of f-isogenies since the degrees may not match i.e. deg¢ # £™.
The actual proof relies on analyzing the spectrum of the adjacency matrix of the ¢-isogeny graph (i.e. the
matrix whose entries are either 1 or 0 to indicate if two vertices share an edge), using (¢ + 1)-regularity and
symmetry of the adjacency matrix (our graph is undirected due to dual isogenies) to make conclusions using
the eigenvalues and the Perron-Frobenius theorem [20].

We mention one last property of these torsion subgroups. Since E[(] = Z/{Z x Z/{Z, E[{] has a 2-
dimensional basis as a Z-module. Let P € E[{] be a point of order ¢, and then pick an element @ € E[{]\ (P)
also of order ¢. The set {[a]P + [b]Q : 0 < a,b < [} clearly has ¢? choices of a,b and is easy to check that
these are distinct. A similar argument can be extended to powers of primes: E[(¢] & Z/{¢7 x Z/¢¢Z and
similarly also generated by two elements (see [59] for the full proof, but it is essentially the same observation
as above).

6.2 SIDH/SIKE Protocols

With the above in mind, we can describe an upgraded version of the Diffie-Hellman Key Exchange from
before, referred to as Supersingular Isogeny Diffie-Hellman (SIDH), or Supersingular Isogeny
Key Encapsulation (SIKE) [19][20][18]. It will be easiest describing the protocol first and connecting the
rationale afterwards.

Supersingular Isogeny Diffie-Hellman:

1. Public Parameters: Alice and Bob begin by picking a public elliptic curve E and prime p = p&epy* —1,
where p; are prime. In particular, this prime is chosen such that E(F,2) = Z/(p+ 1)Z x Z/(p + 1)Z.
Alice picks two public generating points, P,, Q, that generate (P,, Q,) = E[p%] 2 Z/pSeZx L[pS* 7 (we
get this structure since p, { p). Bob does the same for his prime: P,, Q, that generate (P, Q) = E[p;"].

2. Secret Parameters: Alice and Bob pick secret integers mg, nq, my, np and compute the corresponding
secret elements A = [my|P, + [n4)Qq and B = [myp| Py + [np]Qp. Using Vélu’s formulas or otherwise,
Alice and Bob compute the separable isogenies corresponding to their subgroups generated by A, B
ie. a: E(F,) = E/(A)(F,:) and 8 : E(F,2) — E/(B)(F,2). By our above comments, the deg(a) =
ker(a) = |(A)| = pke for some k, < e, (by Lagrange’s theorem), and similarly deg(3) = p’lfb for ky < ey.
Hence these isognies correspond to walks of kg, kp steps in the p,- and p,-isogeny graphs.

3. Public Exchange: Alicesends {E/(A), a(Py), a(Qp)} to Bob, and vice versa with {E/(B), 5(P,), B(Qa)}-

4. Shared Secret: Alice computes with her secret parameters [m,]8(P,)+[n.]8(Qa.) = B(A), and creates
the new isogeny o' : E/(B) — (E/(B))/{8(A)). Consider o’ o 8 : E — (E/(B))/{5(A)). Then
ker(a' o B) = {P € E: B(P) € ker(a/) = (B(A))} ={P € E: 3k s.t. P— [k]A € ker(B) = (B)}
—{PecE:3k(st. P=[k]A+[(B}
= (4, B)

The isognies and their codomains of elliptic curves are uniquely determined (up to isomorphism)
by their kernels, so (E/(B))/{8(A)) = E/{A, B). Similarly, with what Alice shares, Bob computes
B E/(A) — (E/{A))/{a(B)) = E/{A, B) with similar reasoning. Hence, both Alice and Bob reach
the same elliptic curve isomorphism class i.e. j-invariant.

While we do not have direct commutativity—since our isogenies have different codomains—that the
original Diffie-Hellman Key Exchange used (g¢)? = ¢*° = (¢)?, we leveraged the connectedness of the isogeny

36

graphs to still reach a shared secret piece of information, using secret isogenies to encode the information
necessary for either party to essentially redo the first calculation the other person did.

Just as the Diffie-Hellman problem can be reduced to the more general DLP, we pose a similar general
problem that if solved efficiently would also solve SIDH/SIKE:

Isogeny Computation Problem: Given two elliptic curves E, E’ over a finite field that are isogenous of
degree d, find an isogeny ¢ : E — E' with deg(¢) = d.

If one could find an isogeny ¢ : E — E/(A) of degree p¥e, one could then compute ker(¢) = (A’) = (A)
and find a generator A’ (same subgroup, possibly different generator). Writing A’ in terms of the public
basis P,, Q,, they then could continue on to recover the entire shared secret j(E/(A, B)). But this problem
on the whole is considered hard, for the formulation relies on instead of the algebraic hardness of a problem,
on a structural issue of these highly-connected graphs; traversing and searching such a graph has no known
solution™.

Some considerations:

e While we engineer our curve F and prime p to have a nice group structure, we can often pick twists of
E that might optimize some of the group computations.

e We picked a prime of the form p = pS*p;® — 1 such that E(F,2) = Z/(p+1)Z x Z/(p + 1)Z. We
do this so that E[pSe], E[p;’] < E(F,2) are subgroups over the base field. While its true that these
torsion points do form subgroups, they do so in the closure E as that is how we defined the domains
of isogenies and hence their kernels lie there. This choice of prime allows the subgroups and hence
generators that Alice and Bob use to be in the simpler base field. This is not completely strict: we
can also take a prime p = pepy® + 1 with E(Fp2) = Z/(p — 1)Z x Z/(p — 1)Z to get the similar nice
structure we want. We can even include a small cofactor h and be fine with p = h - pSep;® + 1.

e The possible secrets lie in A € E[p5*], B € E[p;’]. To make sure no side is easier than the other to

break, we try to keep the subgroups roughly the same size and hence pi* ~ p;* (see more below).

e Finding isogenies of particular degrees correspond to taking walks of prescribed lengths through the
isogeny graph. To make finding these walks as difficult as possible, we maximize the length and hence
degree of the hidden isognies. So we pick A, B such that [(A)| = pSe and |(B)| = p;". This requires at
least one coefficient coprime to the prime p, (or py), so an easy way to do this is just fix m, = my = 1.

e For convenience, we often take p, = 2,p, = 3. Since Alice and Bob still have to compute some
isogenies themselves, like with Vélu’s formulas, we keep the primes small so that the individual steps
in the isogeny walk/calculations are fast.

How big of an exponent should we use? Naively, a meet-in-the-middle attack with Vélu’s formulas would
expect us to find, say, Alice’s isogeny, in O(pza/z): list all walks on the p,-isogeny graph of length |e,/2]
starting from FE, and then list all walks of length [e,/2] starting from E/(A). There is a slightly more
optimized attack based on a quantum search algorithm that runs in O(pga/ %) [60][20]. Since pée ~ Py,
we have pi* ~ /p. Letting n = logp, from these attacks we obtain ~ (n/4)-bit classical security, and
~ (n/6)-qubit quantum security.

Remark 6.20. While we only discussed the essential properties of ¢-isogeny graphs, we did not give a full
characterization of their properties. While (¢4 1)-regularity and connectedness alone give the impression of
a “complex” and intertwined graph, it is completely formalized in the expander and Ramanujan properties
of these graphs. Expander graphs are nice in that the furthest distance between any two nodes is not only
O(log |V]|) in the number of vertices, and moreover, a random walk on the graph in these number of steps
converges to a uniform distribution on the vertices. Ramanujan graphs are optimally expander, in the sense
that the time for convergence to uniformity is low. [19][18]. This ensures that for sufficiently long walks (by
picking large enough exponents), there is no structural weakness within the graph itself that can be exploited
for deducing the isogeny or not.

37

Remark 6.21. While not explicitly described here, Supersingular Isogeny Key Encapsulation (SIKE) is very
similar to the SIDH protocol. There are attacks that leverage the reusing of the same secret parameters.
Borrowing ideas from authentication and integrity protocols, SIKE takes the same SIDH protocol but makes
the process asymmetric. Instead of a simultaneous exchange of curves and torsion points, only Alice will send
her public key first. To prevent Bob from sending malicious, construed public parameters, he will instead
make his private key a random hash of Alice’s information with a random integer, and proceeds as normal.
After computing the shared secret j, he sends over a hashed/obscured version of j. Alice can now compute j
and verify and reverse engineer all the hashed values to check that Bob’s information is as it should be, and
that he did not try to tamper with the keys. The problem of computing isogenies still underlies the difficulty
of breaking SIKE. See 18] for a worked example and description of the specific attack this resolves.

6.3 Unfortunate Recent Developments

There is an * that needs to be addressed. SIDH/SIKE provides a nice example of what quantum-resistant
algorithms can look like, and in practice it was a strong contender for future implementations. Was is the
key word. In July 2022, SIDH was not only broken, it was broken with a classical attack |15]. This attack
was so efficient, that it broke SIKE with a 751 bit prime (a prime big enough to satisfy NIST’s highest
post-quantum security standard) in just about 3 hours. While it is true that solving SIDH reduces to solving
ICP, the converse is not clear (just like with DLP and classical computational Diffie-Hellman problem).
This attack strongly relies on the additional information given in the exchange {a(P), «(Qp)} beyond just
the curve E/(A). The strategy falls far outside the scope of this essay, involving strategies of pairing and
considering maps between surfaces instead of just curves, making much heavier use of the high-level algebra
to justify computation strategies.

7 Other Post-Quantum Solutions and Further Directions

Despite the recent deprecation of SIDH/SIDH as specific isogeny-based cryptographic schemes, isogeny-based
cryptography stil remains an open possibility. We have highlighted a possible such problem to base some
post-quantum solutions, but there are other varieties that seem promising. We focused on isogeny-based
cryptography for it built on some of the math behind elliptic curves we have been discussing. Here are a few
highlights of other thought-to-be-hard problems in post-quantum settings (see Chapters 3 and 5 of [9]).

7.1 Lattice-Based Cryptography

One promising alternative is lattice-based cryptography. A lattice can be thought of as the integer points on
a grid; instead of looking continuous combinations of vectors, we only look at a discrete ones.

Definition 7.1 (Lattice). Let X = {v1,--- ,v,} be a basis for R”. The lattice generated by X is (v, -+ , vn)z
{Z?zl a;v; : a; € L}.

The most basic problem that most other protocols build on is the shortest vector problem (SVP).

Shortest Vector Problem: Given a basis X, find the shortest vector in the lattice generated by X.

“Shortest” can be defined via any norm, but is easiest thought with the Euclidean norm. All known algo-
rithms (classical or quantum) for solving SVP suffer from a performance and accuracy trade-off: they either
produce accurate approximations and run in non-polynomial time, or are fast and approximate the solution
up to a non-polynomial factor.

7.2 Hash-Based Cryptography

Hash functions are a type of function that have nice cryptographic properties that make them essentially
one-way functions. The two most important properties of hash functions are that they are hard to invert
(i.e. given y = H(z), it is hard to find z) and that they are collision resistant (i.e. it is hard to find =, 2’

38

such that H(z) = H(z')). These both can be formalized as types of difficult problems, and form the basis
for hash-based cryptography.

7.3 Efficiency and Security Comparisons

Algorithm Public key | Ciphertext | Key gen. | Encryption* | Decryption*
(bytes) (bytes) (ms) (ms) (ms)
curve25519 (ECC) 32 32 0.0222 0.0221 0.0221
RSA-2048 256 256 17.7245 0.0025 0.4173
SIKEp434 (I) 330 346 0.9781 1.5984 1.7095
Kyber512 (L) 800 768 0.0041 0.0058 0.0047
FrodoKEM-640 (L) 9616 9736 0.1536 0.2285 0.2287
SPHINCS-256 (H) 1056 41000 0.5011 8.9399 0.2618

Table 3: Performance comparison at NIST Level 1 security i.e. ~ 128-bit classical security.

The above table describes the performance and speed of classical ECC and RSA methods, STKE (isogeny
based), Kyber512 and FrodoKEM (lattice based), as well as the SPHINCS signature (hash based) cryp-
tographic schemes. All benchmarks were performed on an Intel Core i7-13700H (Raptor Cove microar-
chitecture, b06a2) with P-cores running at 4800MHz, using the SUPERCOP benchmarking suite (version
20231107) [10] using the original algorithms, i.e. not specially optimized for specific arithmetic/operations
(and it tends to be in agreement with performance patterns from [45]). We denote (I), (L), and (H) to
denote isogeny, lattice, and hash based protocols. Also, it is important to note that this is a bit of a forced
comparison as we are comparing key exchange, key encapsulation, and signature methods to one another, so
their purposes are not exactly the same. As such, the Ciphertext column denotes the general encrypted
output (i.e. the shared secret, the signed message, etc.), and the Encryption and Decryption column
is how long it takes to generate and read these outputs (for SPHINCS, the assumed size of messages to
be signed are 59 bytes); they represent the time for the sender and receiver to obtain what they need (in
ECC’s key exchange, both have the same role in computing the shared secret). Key generation says how
long it takes to create the public key used in these protocols. The table highlights roughly the expected
overhead one would imagine of isogeny-based cryptography: the overhead is incredibly high by nature of the
calculations involved. Deciding on a protocol to be used is primarily governed by whatever is most useful:
are we generating many keys and need speeds to be fast, or do we have limited storage and bandwidth where
key size is the primary factor.

8 Conclusion

This essay took a path from the ground up with the original key exchange problem to schemes that have
yet to be physically implemented. We discussed the Diffie-Hellman Key Exchange, faults in it and the
discrete logarithm problem, and how DLP alone influences the choice of groups. With the foundations set,
we sketched the ideas of Hasse’s bound that is the ultimate justification for elliptic curve cryptography and
its efficacy. Then we took a detour into quantum computing models to rediscover Shor’s algorithm and how
superposition gives us access to new types of algorithms that gives speedups that no classical computer could
dream of. Finally, we took our computational approach and diverted a bit more into the algebra of isogenies
to describe a promising toy model of how post-quantum solutions could look. The histories of elliptic curves,
cryptography, and quantum computing are deep and varied, with their intersections being brief but fruitful,
and while giving a full explanation of them all would span thousands of pages, I hope this essay has given
some intuitions and guiding principles behind all the topics and how they unify in a way that can make us
optimistic of a safer and more protected future internet.

39

[11]

References

Scott Aaronson. Quantum Computing since Democritus. QC174.17.M35A27. Paperback. Cambridge,
UK: Cambridge University Press, 2013. 1SBN: 978-0-521-19956-8. DO1: [10.1017/CB09780511979309.

David Adrian et al. “Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice”. In: Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security. CCS '15. Denver,
Colorado, USA: ACM, 2015, pp. 5-17. pot: [10.1145/2810103.2813707.

N. Aghanim et al. “Planck 2018 results - VI. Cosmological parameters”. In: Astronomy and Astro-
physics 641 (Sept. 2020), pp. 644-654. DOI: [10.1051/0004-6361/201833910.

Mirko Amico, Zain H. Saleem, and Muir Kumph. “An Experimental Study of Shor’s Factoring Algo-
rithm on IBM Q”. In: Physical Review A 100 (2019). arXiv:1903.00768v3, p. 012305. por: 10.1103/
PhysRevA.100.012305. arXiv: [1903.00768 [quant-ph].

Liljana Babinkostova et al. “On Isomorphic K-Rational Groups of Isogenous Elliptic Curves Over
Finite Fields”. In: arXiv preprint arXiw:2011.08471 (2020). arXiv: 2011.08471 [math.NT].

Elaine Barker. Recommendation for Key Management: Part 1 — General. Special Publication 800-57
Part 1, Revision 5. National Institute of Standards and Technology, May 2020. DOI: |[10.6028/NIST.
SP.800-57ptlrb. URL: https://doi.org/10.6028/NIST.SP.800-57ptlr5,

Stéphane Beauregard. “Circuit for Shor’s algorithm using 2n+3 qubits”. In: Quantum Information and
Computation 3.2 (2003), pp. 175-185. DOI: [10.48550/arXiv.quant-ph/0205095.

Daniel J. Bernstein. “Curve25519: new Diffie-Hellman speed records”. In: Security and Cryptography
for Networks (2006). Document ID: 4230efdfa673480£c079449d90{322c0, pp. 207—-228. DOI: [10. 1007/
11745853_14.

Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, eds. Post-Quantum Cryptography. Math-
ematics Subject Classification (2000): 94A60. Printed on acid-free paper. Berlin Heidelberg: Springer-
Verlag, 2009. 1SBN: 978-3-540-88701-0. URL: |springer. com.

Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT Benchmarking of Cryptographic Systems.
Diffie-Hellman benchmarks: https://bench.cr.yp.to/results-dh/amd64-raptor.html; Key-
encapsulation mechanisms benchmarks: https://bench.cr.yp.to/results-kem/amd64-raptor.
html; Digital signature benchmarks: https://bench.cr.yp.to/results-sign/amd64-raptor.html.
2023. URL: https://bench.cr.yp.to/| (visited on 03/13/2025).

Daniel J. Bernstein et al. “Faster computation of isogenies of large prime degree”. In: Fourteenth
Algorithmic Number Theory Symposium (ANTS XIV). Vol. 4. The Open Book Series. Mathematical
Sciences Publishers, 2020, pp. 39-55. DOI: |10.2140/0bs.2020.4.39. URL: https://doi.org/10.
2140/0bs.2020.4.39.

Catherine Bolgar. Microsoft’s Majorana-1 chip carves new path for quantum computing. https://
news.microsoft.com/source/features/innovation/microsofts-majorana-1-chip-carves-new-
path-for-quantum-computing/. Accessed: 2025-02-20. Microsoft, Feb. 2025.

Reinier Broker and Peter Stevenhagen. Constructing elliptic curves of prime order. 2007. arXiv: 0712.
2022 [math.NT]. URL: https://arxiv.org/abs/0712.2022,

Johannes A. Buchmann. Introduction to Cryptography. Springer, 2000. 1SBN: 0387950346.

Wouter Castryck and Thomas Decru. “An efficient key recovery attack on SIDH”. In: IACR Cryptology
ePrint Archive 2022.975 (2022). Published in Theoretical Computer Science, 410(50):5285-5297. URL:
https://eprint.iacr.org/2022/975.

Lily Chen et al. Report on Post-Quantum Cryptography. NIST Internal Report NISTIR 8105. Avail-
able free of charge from: http://dx.doi.org/10.6028 /NIST.IR.8105. Gaithersburg, Maryland: National
Institute of Standards and Technology, Apr. 2016, p. 15. DOI: [10.6028/NIST.IR.8105.

R. Cleve et al. “Quantum Algorithms Revisited”. In: Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 454.1969 (1998), pp. 339-354. DOI: |10.1098/rspa.1998.0164.

40

https://doi.org/10.1017/CBO9780511979309
https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1103/PhysRevA.100.012305
https://doi.org/10.1103/PhysRevA.100.012305
https://arxiv.org/abs/1903.00768
https://arxiv.org/abs/2011.08471
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.48550/arXiv.quant-ph/0205095
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
springer.com
https://bench.cr.yp.to/results-dh/amd64-raptor.html
https://bench.cr.yp.to/results-kem/amd64-raptor.html
https://bench.cr.yp.to/results-kem/amd64-raptor.html
https://bench.cr.yp.to/results-sign/amd64-raptor.html
https://bench.cr.yp.to/
https://doi.org/10.2140/obs.2020.4.39
https://doi.org/10.2140/obs.2020.4.39
https://doi.org/10.2140/obs.2020.4.39
https://news.microsoft.com/source/features/innovation/microsofts-majorana-1-chip-carves-new-path-for-quantum-computing/
https://news.microsoft.com/source/features/innovation/microsofts-majorana-1-chip-carves-new-path-for-quantum-computing/
https://news.microsoft.com/source/features/innovation/microsofts-majorana-1-chip-carves-new-path-for-quantum-computing/
https://arxiv.org/abs/0712.2022
https://arxiv.org/abs/0712.2022
https://arxiv.org/abs/0712.2022
https://eprint.iacr.org/2022/975
https://doi.org/10.6028/NIST.IR.8105
https://doi.org/10.1098/rspa.1998.0164

[25]

[26]

[27]

Craig Costello. “Supersingular isogeny key exchange for beginners”. In: International Conference on
Selected Areas in Cryptography (2019), pp. 1-31. DOI: |10.1007/978-3-030-10970-7_1.

Luca De Feo. “Mathematics of Isogeny Based Cryptography”. In: arXiv preprint arXiv:1711.04062
(2017). URL: https://arxiv.org/abs/1711.04062.

Luca De Feo, David Jao, and Jéréme Plat. “Towards quantum-resistant cryptosystems from supersin-
gular elliptic curve isogenies”. In: Journal of Mathematical Cryptology 8.3 (2014), pp. 209-247.

Simon J. Devitt, Kae Nemoto, and William J. Munro. “Quantum Error Correction for Beginners”. In:
arXiv preprint arXiv:0905.2794 (2009). arXiv:0905.2794v4 [quant-ph]. DOI: [10.1088/0034-4885/76/
7/076001. URL: https://arxiv.org/abs/0905.2794.

Whitfield Diffie and Martin Hellman. “New Directions in Cryptography”. In: IEEE Transactions on
Information Theory IT-22 (Nov. 1976), pp. 644-654.

Martin Ekera. “On the Success Probability of Quantum Order Finding”. In: ACM Transactions on
Quantum Computing 5.2 (May 2024). DOI: |10.1145/3655026.

Hewlett Packard Enterprise. Hewlett Packard Enterprise delivers world’s fastest direct liquid-cooled
exascale supercomputer, “El Capitan”, for Lawrence Livermore National Laboratory. 2024. URL: https:
//www . hpe . com/us/en/newsroom/press-release/2024/11/hewlett-packard-enterprise-
delivers-worlds-fastest-direct-liquid-cooled-exascale-supercomputer-el-capitan-for-
lawrence-livermore-national-laboratory.html (visited on 01/05/2024).

Austin G. Fowler et al. “Surface codes: Towards practical large-scale quantum computation”. In: Phys.
Rev. A 86 (3 Sept. 2012), p. 032324. DOI: [10.1103/PhysRevA.86.032324. URL: https://doi.org/
10.1103/PhysRevA.86.032324.

Jay Gambetta. Quantum Roadmap 2033. https://www.ibm.com/quantum/blog/quantum-roadmap-
2033 Accessed: 2025-02-20. IBM Quantum, Dec. 2023.

Craig Gidney and Martin Ekera. “How to factor 2048 bit RSA integers in 8 hours using 20 million
noisy qubits”. In: Quantum 5 (2021), p. 433. DOI: [10.22331/q-2021-04-15-433. arXiv: |1905.09749
[quant-ph].

Daniel Gottesman. “An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Com-
putation”. In: arXiv preprint arXiv:0904.2557 (2009). Includes expanded version of quant-ph/0004072
plus 30 pages of new material, p. 46. DOI:|10.48550/arXiv.0904.2557. arXiv: 0904 .2557 [quant-ph].

Torsten Hoefler, Thomas Héner, and Matthias Troyer. “Disentangling Hype from Practicality: On
Realistically Achieving Quantum Advantage”. In: Communications of the ACM 66.5 (May 2023),
pp. 82-87. DOI: |10.1145/3571725.

Dale Husemoller. Elliptic Curves. 2nd ed. Vol. 111. Graduate Texts in Mathematics. New York:
Springer-Verlag, 2004. 1SBN: 978-0-387-95490-5. DOI: [10.1007/978-0-387-21577-8.

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman and Hall/CRC,
2014. 1SBN: 9781466570276.

Neal Koblitz. A Course in Number Theory and Cryptography. Springer, 1994. 1SBN: 9780387942933.

Thalia Laing and Tommy Charles. Anticipating the Quantum Threat to Cryptography. https://
threatresearch.ext.hp.com/anticipating-the-quantum-threat-to-cryptography/. Accessed:
2025-02-20. HP Security Lab, Feb. 2024.

Arjen K. Lenstra. “Key Lengths: Contribution to The Handbook of Information Security”. In: (2010).

Franck Leprévost et al. “Generating Anomalous Elliptic Curves”. In: Elsevier Science (Nov. 2004).
Preprint submitted to Elsevier Science.

Kerry Maletsky. RSA vs. ECC Comparison for Embedded Systems. White Paper DS00003442A.. Orig-
inally published by Atmel as document 8951A in July 2015. Microchip Technology Inc., Apr. 2020.
URL: https://www.microchip.com/.

Ueli M. Mauer. “Towards the Equivalence of Breaking the Diffie-Hellman Protocol and Computing
Discrete Logarithms”. In: Advances in Cryptology 839 (1994), pp. 271-281.

41

https://doi.org/10.1007/978-3-030-10970-7_1
https://arxiv.org/abs/1711.04062
https://doi.org/10.1088/0034-4885/76/7/076001
https://doi.org/10.1088/0034-4885/76/7/076001
https://arxiv.org/abs/0905.2794
https://doi.org/10.1145/3655026
https://www.hpe.com/us/en/newsroom/press-release/2024/11/hewlett-packard-enterprise-delivers-worlds-fastest-direct-liquid-cooled-exascale-supercomputer-el-capitan-for-lawrence-livermore-national-laboratory.html
https://www.hpe.com/us/en/newsroom/press-release/2024/11/hewlett-packard-enterprise-delivers-worlds-fastest-direct-liquid-cooled-exascale-supercomputer-el-capitan-for-lawrence-livermore-national-laboratory.html
https://www.hpe.com/us/en/newsroom/press-release/2024/11/hewlett-packard-enterprise-delivers-worlds-fastest-direct-liquid-cooled-exascale-supercomputer-el-capitan-for-lawrence-livermore-national-laboratory.html
https://www.hpe.com/us/en/newsroom/press-release/2024/11/hewlett-packard-enterprise-delivers-worlds-fastest-direct-liquid-cooled-exascale-supercomputer-el-capitan-for-lawrence-livermore-national-laboratory.html
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://www.ibm.com/quantum/blog/quantum-roadmap-2033
https://www.ibm.com/quantum/blog/quantum-roadmap-2033
https://doi.org/10.22331/q-2021-04-15-433
https://arxiv.org/abs/1905.09749
https://arxiv.org/abs/1905.09749
https://doi.org/10.48550/arXiv.0904.2557
https://arxiv.org/abs/0904.2557
https://doi.org/10.1145/3571725
https://doi.org/10.1007/978-0-387-21577-8
https://threatresearch.ext.hp.com/anticipating-the-quantum-threat-to-cryptography/
https://threatresearch.ext.hp.com/anticipating-the-quantum-threat-to-cryptography/
https://www.microchip.com/

[41]

Alfred J. Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. “Reducing Elliptic Curve Logarithms
to Logarithms in a Finite Field”. In: IEEE Transactions on Information Theory 39.5 (1993), pp. 1639—
1646.

Dustin Moody. Let’s Get Ready to Rumble - The NIST PQC Competition. Presentation. NIST Post-
Quantum Cryptography Standardization Process. National Institute of Standards and Technology
(NIST), 2018.

National Institute of Standards and Technology. Recommended Elliptic Curves for Federal Government
Use. Technical Report. Contains specifications for elliptic curves over prime and binary fields, includ-
ing curve parameters, implementation details for modular arithmetic, and basis conversion methods.
National Institute of Standards and Technology, July 1999.

National Institute of Standards and Technology. Submission Requirements and Evaluation Criteria
for the Post-Quantum Cryptography Standardization Process. NIST Call for Proposals. Federal In-
formation Processing Standards (FIPS). National Institute of Standards and Technology, 2016. URL:
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-
standardization.

V. I. Nechaev. “Complexity of a determinate algorithm for the discrete logarithm”. In: Mathematical
Notes 55 (Feb. 1994), pp. 165-172. po1: 10.1007/BF02113297.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. 10th
Anniversary Edition. Cambridge, UK: Cambridge University Press, 2010. 1SBN: 978-1-107-00217-3.

Francisco Orts, Gloria Ortega, and Ester M Garzén. “Studying the cost of n-qubit Toffoli gates”. In:
International Conference on Computational Science. Springer. 2022, pp. 108-121. pOI: [10.1007/978-
3-031-08760-8_10.

Christian Paquin, Douglas Stebila, and Goutam Tamvada. “Benchmarking Post-Quantum Cryptogra-
phy in TLS”. In: Cryptology ePrint Archive (Feb. 2020). Available at: https://github.com/xvzcf/
pq-tls-benchmark.

Carl Pomerance. “The Expected Number of Random Elements to Generate a Finite Abelian Group”.
In: Periodica Mathematica Hungarica 43.1-2 (2001), pp. 191-198.

Thomas Pornin. Efficient and Complete Formulas for Binary Curves. Cryptology ePrint Archive, Paper
2022/748. Oct. 2022. URL: https://eprint.iacr.org/2022/748.

John Preskill. Physics 219/Computer Science 219: Quantum Computation. http://theory.caltech.
edu/~preskill/ph219/. First prepared 1997-98, with various chapters updated through 2020. 2024.

John Proos and Christof Zalka. “Shor’s discrete logarithm quantum algorithm for elliptic curves”. In:
arXiv preprint quant-ph/0301141 (Jan. 2004). Version 2.

Martin Roetteler et al. “Quantum Resource Estimates for Computing Elliptic Curve Discrete Loga-
rithms”. In: arXiv preprint arXiv:1706.06752 3 (Oct. 2017).

René Schoof. “Counting points on elliptic curves over finite fields”. In: Journal de Théorie des Nombres
de Bordeaux 7.1 (1995), pp. 219-254.

Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a
Quantum Computer”. In: STAM Journal on Computing 26.5 (1997), pp. 1484-1509. por: 10.1137/
S0097539795293172.

Victor Shoup. “Lower Bounds for Discrete Logarithms and Related Problems”. In: Advances in Cryp-
tology — EUROCRYPT ’97 1233 (July 2001), pp. 256-166. DOI: |10.1007/3-540-69053-0_18.

Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge University
Press, 2009. 1SBN: 9780521516440.

Joseph H. Silverman. The Arithmetic of Elliptic Curves. 2nd ed. Vol. 106. Graduate Texts in Mathe-
matics. New York: Springer, 2009. 1SBN: 978-0387094939. DOI: |[10.1007/978-0-387-09494-6.

Joseph H. Silverman and John Tate. Rational Points on Elliptic Curves. Undergraduate Texts in
Mathematics. New York: Springer-Verlag, 1992. 1SBN: 0-387-97825-9.

42

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://doi.org/10.1007/BF02113297
https://doi.org/10.1007/978-3-031-08760-8_10
https://doi.org/10.1007/978-3-031-08760-8_10
https://github.com/xvzcf/pq-tls-benchmark
https://github.com/xvzcf/pq-tls-benchmark
https://eprint.iacr.org/2022/748
http://theory.caltech.edu/~preskill/ph219/
http://theory.caltech.edu/~preskill/ph219/
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-0-387-09494-6

N. P. Smart. “The Discrete Logarithm Problem on Elliptic Curves of Trace One”. In: Journal of
Cryptology 12.3 (1999). Received 9 December 1997 and revised 11 March 1998, pp. 193-196. DOTI:
10.1007/s001459900052.

Stephanie Susnjara and Tan Smalley. What is quantum-safe cryptography? https://www.ibm.com/
think/topics/quantum-safe-cryptography. Accessed: 2025-02-20. IBM Think, Sept. 2024.

Andrew Sutherland. Isogeny Kernels and Division Polynomials. Lecture Notes for 18.783 Elliptic
Curves. Lecture #5, Fall 2023. Sept. 2023.

Seiichiro Tani. “Claw Finding Algorithms Using Quantum Walk”. In: Theoretical Computer Science
410.50 (2009). Originally submitted on 20 Aug 2007; revised 3 Mar 2008, pp. 5285-5297. DOI1:/110.1016/
j.tcs.2009.08.030. arXiv: |0708.2584 [quant-ph]. URL: https://arxiv.org/abs/0708.2584.

Joseph Tindall et al. “Efficient Tensor Network Simulation of IBM’s Eagle Kicked Ising Experiment”.
In: PRX Quantum 5.010308 (Jan. 2024). pOI: 10.1103/PRXQuantum.5.010308.

Lawrence C. Washington. Elliptic Curves: Number Theory and Cryptography. 2nd ed. Discrete Mathe-
matics and its Applications. Boca Raton: Chapman and Hall/CRC, 2008. 1sSBN: 978-1420071474. DOI:
10.1201/9781420071474.

William C. Waterhouse. “Abelian varieties over finite fields”. In: Annales scientifiques de ["Ecole Nor-
male Supérieure. 4th ser. 2.4 (1969), pp. 521-560. DOI: |10 .24033/asens . 1183. URL: http: //www.
numdam. org/item?id=ASENS_1969_4_2_4_521_0.

Watson. Answer to "Why all supersingular elliptic curves over E, are isogenous?”. Licensed under
CC BY-SA 3.0: https://creativecommons . org/licenses/by-sa/3.0/. Apr. 2023. URL: https:
//mathoverflow.net/questions/444846/why-all-supersingular-elliptic-curves-over-bar-
mathbbf-p-are-isogenous| (visited on 03/13/2025).

10 Appendix
10.1 Diffie-Hellman Visualization

(G, 0), generator g

Alice’s Domain Bob’s Domain

[Both compute identical shared secret: S = ¢g®* = gb"]

10.2 Understanding the Pohlig-Hellman Algorithm
We give full proofs of Theorems 2.6 and 2.7 to reduce DLP for any group G to prime order subgroups of G.

Theorem 10.1. Let G be a finite cyclic group of order |G| = pi* ---py* = n with generator g, and p; are
prime. Set

— €i — M N (7} _
n; =n/pit, g =g", a; = a", x; = logy,a;.

If x € Zy, is a solution to the simultaneous congruences x = x; mod pj’, then x = log a.

43

https://doi.org/10.1007/s001459900052
https://www.ibm.com/think/topics/quantum-safe-cryptography
https://www.ibm.com/think/topics/quantum-safe-cryptography
https://doi.org/10.1016/j.tcs.2009.08.030
https://doi.org/10.1016/j.tcs.2009.08.030
https://arxiv.org/abs/0708.2584
https://arxiv.org/abs/0708.2584
https://doi.org/10.1103/PRXQuantum.5.010308
https://doi.org/10.1201/9781420071474
https://doi.org/10.24033/asens.1183
http://www.numdam.org/item?id=ASENS_1969_4_2_4_521_0
http://www.numdam.org/item?id=ASENS_1969_4_2_4_521_0
https://creativecommons.org/licenses/by-sa/3.0/
https://mathoverflow.net/questions/444846/why-all-supersingular-elliptic-curves-over-bar-mathbbf-p-are-isogenous
https://mathoverflow.net/questions/444846/why-all-supersingular-elliptic-curves-over-bar-mathbbf-p-are-isogenous
https://mathoverflow.net/questions/444846/why-all-supersingular-elliptic-curves-over-bar-mathbbf-p-are-isogenous

Proof. First note our defined variables and relations are well-defined. Since o(g) = n, then o(g;) = p5*. Also,
since g is a generator, for all @ € G there exists | such that ¢! = a. Hence g} = (¢)! = (¢')" = a™ = q;
and so a; € (g;) and hence log,, a; = z; exists and is well-defined.

Since x = z; mod p{*, we have for all i = 1,...,k that (g7%a)™ = (¢") %a; = g; “'a; = (a;) " la; = 1
Hence o(¢g~*a) | n; for all i and therefore o(g~%a) | ged(ni,ne, -+ ,ng) = 1. Hence o(g~%a) = 1, ie.
g %a=1and a = g as claimed. O

Thus instead of needing to solve DLP in groups of general order n, we only have to solve them in groups
with prime power orders and use the Chinese Remainder Theorem to stitch together a solution. In fact, we
can further reduce solving DLP to solving DLP into just prime order subgroups.

Theorem 10.2. Let G be a finite cyclic group of order |G| = p® = n with generator g and p prime, and let
a € G be an arbitrary element. Then we can find x = log, a with e sub-DL problems in groups of order p.

Proof. We want to solve g* = a. Since x € Zye, © < p°. Now write = in its p-adic expansion: = =
To+ TP+ A Teo1p® Tt With 0 < 2y < pfor 0 <43 < e — 1. If we can determine every x;, we will also
have determined z. Raising our DLP to p¢~! on both sides, we have g?*~
expression for z and noting o(g) = p© as it is a generator, we have

tx

= aP*"". Substituting the p-adic

—1

la P (zotmipt+ze1p°) P (z1+Fae1p°72) _ gr’

g° =g “lao+p (zrt A Te—1p) _ gpe’lxo

=g’ g

e— Zo e— . e—
Hence (gp ' = a? 1, and since o (g” 1) = p, zg is a discrete logarithm in a subgroup of order p.
We now inductively determine the remaining coefficients z; in the expansion. Suppose we have determined

g, ,Tkp_1. Then

To+T1ptt e 1p°T " _— grkpk+zk+1pk+l+-“+1e—117€71 —($0+$1P+'~+xk71Pk71> .

g =a =ag = ag.

e—1\ Tk e—k—1
Call the RHS term ay, and raise both sides to p°~*=1. As above, terms simplify to (gp 1) =al

This is a discrete logarithm in a group of order p. Hence, with e discrete logarithms in a group of order p,
we can determine z = logg a in Zype. O

The two theorems above give the Pohlig-Hellman algorithm to find discrete logarithms. To complete
the algorithm, we only now need a general DLP solving algorithm, like the Baby-Step Giant-Step algorithm
that runs in O(y/n).

10.3 Some Notes on DLP Algorithms
10.3.1 Baby-Step Giant-Step: A General DLP Algorithm

For an arbitrary finite abelian group of order n, we need at least O(y/n) group operations. While the proofs
of the bounds are abstract, we in fact have algorithms that meet this bound. Below is one such algorithm
that is commonly implemented with the Pohlig-Hellman algorithm when storage is not an issue.

The naive method to calculate discrete logarithms is to just check every possible value of z to see if g* = a.
But because of the division algorithm, we need only /n elements of G to calculate all other elements. Let
m = [y/n | and write z = gm + r where 0 < ¢ < m and 0 < r < m. So we have g?"*" = a, which implies
that (¢™)? = ag~". This suggests a two-loop search to find x: one loop involving “baby steps” of size g
(iterating over r) and another loop of “giant steps” of size g™ (iterating over q).

Let B = {(ag™",r) : 0 < r < m} be our baby-steps. If the pair (1,7) € B, then we have ag™" =1 i.e.
a = g" and we're done. If we don’t find such a pair, we store B, and compute the giant-steps G = {(¢™)? :
0 < ¢ < m}. We now check if there is a value of ¢ such that (¢™)? = ag™" for some r in B. Rearranging
this last equality gives g9™*" = g* = a as desired. Since prime order groups have been the main focus, we
implement that below. Otherwise the main issue is calculating g~!, which can be done with the extended

Euclidean algorithm from below (by identifying C,, & Z,,).

44

Baby-Step Giant-Step Algorithm (Shanks 1969): Let G be a finite cyclic group of primer order
|G| = p, g € G a generator, and a € G an element. We want to find z such that ¢* = a.

def baby_step_giant_step(g,a,p): # Solves g”z = a mod p
m = int(ceil(sqrt(p - 1)))
baby_steps = {} # Storing the baby steps as pair (ag™-r, 7)

g_inv = pow(g, p-2, p)
gs = a

for r in range(m):
if gs ==
return r
baby_steps([gs] = r
gs = (gs * g_inv) % p

delta = pow(g, m, p)
giant 1

for q in range(m):

Compute g~-1 using Fermat's little theorem

Initialize baby steps ag™-r

First loop: baby steps
Early exit tf solution found

Add to baby step dictionary
Incrememnt baby step by 1

g°m is giant step wvalue
Initialize giant steps g™m

Second loop: giant steps

if giant in baby_steps: # Check if (¢g"m)"q = ag™-r for some r
return q * m + baby_steps[giant]
giant = (giant * delta) % p # Increment giant step by 1
return False # False if mothing found

The major cost of this algorithm is storing baby_steps and efficiently looking up elements from it, but
otherwise, this is an optimal algorithm to calculate discrete logarithms in any group, meeting the bound of
Nechaev-Shoup. If we do not care about generic algorithms and are okay working in specific groups, there
are more specialized algorithms that leverage the structure of the specific group.

Remark 10.3. Some might wonder why we use m = [y/n | as our loop values. For a given loop value m,
we will need to do m passes on the baby step loop, and n/m passes on the giant step loop. If we want to
minimize the total number of passes m + n/m, it is easy to see that this value is minimized when m = /n.

10.3.2 Using Z;, and the Weakness of Factorization

While Z; is a natural group to consider for how well-understood it is in both structure and operations,
a glaring issue in the light of DLP, however, is that |Z;| = p — 1 is not prime, so we typically work in a
subgroup instead of the whole group. Here is one method to generate such a subgroup without having to
worry about factoring |Z, | and using a generator from above .

Theorem 10.4. Let p = rq+ 1 with p,q prime. Then G = {h" mod p: h € Z;j} is a subgroup of order q.

Proof. The idea is that we quotient out all the cycles of length r, leaving us with a group of order g.
Let ¢ : Z; — G be the homomorphism ¢(h) = h" mod p. By the First Isomorphism Theorem, we have
7 [ker ¢ = Im ¢ = G. We now show |ker ¢| = r.

X

Let g be a generator for Z;, and suppose g' €kergie. (¢9)" =1andsop—1]ir. Since p—1=rq,
we have q | i. Therefore, the possible values of i that satisfy g° € ker ¢ are {0,q,2q,---,(r — 1)q}. Hence,
| ker ¢ =7, and |G| = |Z[/|ker | = (p—1)/r = q. O

Finding this group is easy: just exponentiate every element in Z) by r and remove duplicates. Also

since it is prime order, every element is a generator and so we can use every element in our use of the Key
Exchange as we please.

45

10.3.3 Index Calculus Attack

We have discussed that general algorithms can solve DLP in at best O(y/n) and shown such an algorithm,
but that does not mean that we cannot do better if we tailor an algorithm to a specific group. Z) is one
such group in which DLP can be solved in subexponential time with indez calculus methods |14][31]]54]. It is
an algorithm that is adapted from ones to factor integers. To solve DLP, the idea is that instead of solving a
single DLP in O(y/n), we can solve many DLPs simultaneously via a system of linear equations, and stitch
together a solution. For this section, suppose that we are trying to solve g* = a mod p with generator g.

Let B be an integer bound, and let F(B) = {¢ < B : g primes} be our factor base. We say an integer is
B-smooth if its prime factors are in F(B). We now solve DLP in two steps.

Step 1: Fix a bound B, and let & = |F(B)| be the number of primes in our factor base. Then find
distinct x1,-- -,z such that g; = ¢ mod p are all B-smooth (i.e. just randomly pick x; until enough are
found). Since these are B-smooth, we can factor them in F'(B):

Z1

=g = H ¢°** mod p
q€F(B)

g

g*=gi= [] ¢+ modp
gqEF(B)

with nonnegative exponents ¢; ,. Taking discrete logarithms:

x1 = Z e1,4log, g mod (p — 1)
qEF(B)

Tp = Z ek,qlog, g mod (p — 1)
qEF(B)

where log, ¢ is unknown. But, this is a system of k linear equations in k unknowns {log, ¢},cr(p), so we
can solve for log, ¢ for all ¢ € F(B) efficiently (i.e. with linear algebra).

Step 2: Then, find an exponent y € Z,; such that ag” mod p is B-smooth (i.e. by sampling random y).
Similarly, since it is B-smooth, we can factor ag?¥ = quF(B) ¢¢‘9 mod p (for new nonnegative exponents
e(q)). Taking the discrete logarithm:

log,a+y= Z e(q)log, ¢ mod (p — 1)
qEF(B)

which allows us to solve for log, a since since we determined log, ¢ for all g € F (B) in the previous step.

10.3.4 Analysis for Index Calculus

This works for Z) and not other groups in general is because of the need for a notion of “prime” elements
to do the factorizations. In terms of complexity, the primary bottleneck in index calculus methods is picking
a bound B, finding B-smooth elements, and factoring g** at each step. For larger B, the more likely our
numbers chosen will be B-smooth, but the larger the system of equations we would have to solve. In
particular, the complexity of this algorithm can be shown to be O(exp(y/In(p)In(lnp))) (with particular
constants able to be determined with more complex analysis). The main cost is in generating the desired
linear relations and factoring, but notice that this step only involves the public knowledge involved in DLP:
p (by knowledge of the group Z) and g; the knowledge of the particular DLP to solve for element a is only
used in Step 2. So we can use Step 1 as pre-processing step, and compute lots of discrete logarithms in a
group quickly with a one-time heavy cost.

46

10.3.5 Homogeneous Coordinates for ECDLP

With the need to include a “point at infinity” oo that exists somewhat artificially in our group structure,
it is natural to explore the topic in the context of projective planes and homogeneous coordinates. Instead
of considering points (z,y), we consider (X,Y;Z). We then consider the affine point (z,y) = (z,y;1), or
more generally, to be the equivalence class of homogeneous points of the form (zZ,yZ; Z) as for non-zero Z
this uniquely identifies (x,y;1). Substituting z = X/Z and y = Y/Z, we see that our elliptic curve equation
becomes Y27 = X3 4+ aXZ% +bZ3. If we let Z =0, then we are left with X2 = 01i.e. X = 0. Thus we have
a singular equivalence class of (0,1;0) that does not “nicely” map to one of our affine points. This point
we call co = (0,1;0) is our point at infinity, formalizing this idea of oo being above all the vertical lines
simultaneously in affine space as it literally is the intersection of the y-axis and a line at infinity.

Besides unifying the geometry a bit more, there are real practical implications. Notably, having access
to a class of points to represent a single coordinate (z,y) allows us to rationalize denominators within the
field, avoiding the need to calculate inverses (which can be expensive!). Recall our point addition formulas

R=PaQ:
2
P ((M) Cer o (y@yp(m_xp)wp)).
rQ —xp TQ —Tp

Converting these into homogeneous coordinates P = (zp,yp) = (Xp/Zp,Yp/Zp;1),Q = (zq,yq) =
(XQ/2q:Yq/Zq;1):

2
(Y (S i)

YoZp —YpZo \° YoZp — YpZo
= | (S22 —=L29) —Xp/Zp— Xo/Zo,— | =222 —L2C (2p — Xp/Zp) + Yp/Zp) i1
((XQZP—XPZQ> plZp — Xq/Zq, XQZP—XPZQ(zR p/Zp) +Yp/Zp |;

Since we can pick any value of Zg to scale our homogeneous coordinates by, we can rationalize Xg and Yg
to remove all instances of division. If we let Zg = Z1Z5(XgZp — X pZQ)3, we can clear all denominators;
every term is just solely in terms of addition and multiplication. Hence instead of needing to calculate lots
of multiplicative inverses during computation, we can do everything in homogeneous coordinates without
division, and spend one division operation on converting back to affine coordinates R = (zg, yr).

10.4 Understanding The Nechaev-Shoup Theorem

The Nechaev-Shoup Theorem states that any non-group specific discrete logarithm solving algorithm must
run in at least O(y/n) [42][53]. The Theorem works on the principle of a generic groups, which formalizes
this abstraction away from the specifics of a given group. When working with a generic group, 1) we encode
elements with random bit strings, 2) we can compute the group operation via a “black box” oracle B that
takes in 2 elements and outputs another (mathematical operation), and 3) we can check if any two elements
we have are equal (logical operation). An algorithm in this scenario only starts as input (the bit-encodings
of) the identity 1, the generator g, and the target element h = ¢g”. The point of encoding our elements is
that we cannot use any meta-knowledge we may have regarding the elements in the group (like in Z)’). So
for convenience, I will just write the group elements or outputs from our oracle B as they are, but just know
that what is intended is the bit encoding and that we essentially lack all knowledge of the element except its
name (this includes powers; even if I write g and ¢*, in the model, we do not outright know ¢ is a power
of g unless we explicitly compute it and compare them for equality).

The idea is that with only g, h known at the beginning, we can iteratively construct new group elements
(via the oracle). But the new elements will only be of the form g®h? = g*+#® for some integers «, 3. So if a
choice of a1, 51 creates an element we have seen before, say for as, 82, then we have learned something about
the secret discrete logarithm x via the relation a; 4+ S1x = as + B2x. This does not explicitly determine z,
but it is new information regarding relations between z.

47

Theorem 10.5 (Nechaev-Shoup). Let G be a group of prime order p and A be a probabilistic algorithm. If
A makes m mathematical operations via the oracle, then the probability that A solves the DLP is

(m+2)?2 1
P(A(p,g.g") =) < Ty =
(A(p,g,9") = z) 5 ’

Sketch of Shoup’s Proof. The idea is as above: the only way A learns information about the group elements
is by computing the product of elements to find relations between them, and these relation will take place
as the exponent expressions above. So we will create two lists: Lelem C G keeps track of our (encoded)
group elements we have computed thus far, and Lex, C Z[t] that keeps track of the linear expressions of the
exponents F;(t) = «; + (;t that represent each element g; € Lejem. Remember, all of our group combinations
are of the form ¢g®h? = ¢®+5% so we can identify elements via their exponent « + Bz, so for the element
gi € Lelem, we have a corresponding expression F;(t) = a; + Bit € Lexp. So initially, Lelem = {g,¢"} and
Lexp = {1,t}.

Now we model the most general approach any such algorithm A can take solving DLP. All such A will
ask the oracle B to create new elements via products of previous known elements in Lejer,. To A, since there
is no knowledge on the relationships between group elements (i.e. random bit-encoded), the oracle seems to
output random elements. Note, since all of our exponents are of the form «; + (5;t, we see that

.(gizgj) _ .(gai"l‘Bit’gale‘Bjt) — gOéH-Bithéj-i-ﬂjt _ g(ari-aj)-‘r(@ri-,@j)t

This suggests we follow a procedure of computation with the oracle via our expression list Lejem: if A requests
M(g;, g;), we look up the expression F;(t) + F;(t) = (o + ;) + (8; + 55)t = g1+ PBng1t in Lexp. If there is
such an expression ay+1 + Bnt1t = ok + Pt € Lexp (i.e. we already found this expression), we let B return
the corresponding gi € Lelem- If there is not such an expression, we let the oracle return a random new
element g, 41 t0 Lelem not already in it (like the random product element W), and add F,,+1 = F;(t) + F;(¢)
t0 Lexp-

We let A do its m requests to B, and generate up to m new elements for Lejem and Lexp. The key detail,
now, is that these conversations between A and M represent the most general approach an algorithm could
take to solve DLP. And since there is no knowledge of the individual group elements (they are encoded), the
output of A(p, g, g*) would appear to be independent of the input « (and hence independent of g*). Suppose
the output is A(p, g, ¢*) = y, and after pick a random value of the exponent/discrete logarithm x* we wish
to compute. There are two ways A could be successful.

1. y = z* i.e. A happened to get lucky.
2. Fi(z*) = Fj(a*) for i # j i.e. A has found a non-trivial relation regarding z* and gained information.

The probability that «* = y after y is outputted is 1/p since we specified o(g) = p and so there are p choices
for the exponent. Similarly, note F;(t) is a linear polynomial for all ¢, and so F;(t) — F;(t) is also linear and
hence has 1 root. The probability that z* is this root is also 1/p, but we add the factor (m + 2)(m + 1)/2
to account for all possible pairs of equations ¢ # j (with an upper limit of at most m possible equations in
Lelem). These success conditions are far more generous than the requirement of actually solving DLP. Hence
the success rate that A solves DLP is bounded:
2

;.(m+2)2(m+1)+1<(m+2) 1 .

P(A(p,g,.¢°) =) <
(A(p,g,9") = x) o)

Sl

Remark 10.6. Often, the collision between F;(z*) = Fj(z*) is enough to solve the DLP entirely. The
collision implies o; + f;2* = a; + fjz* i.e. 2* = (a; — ;) /(B — ;) with division taking place in the field Z,.
So long as f3; # B3;, these collisions are really detrimental. We said collisions only give non-trivial information
to make it clear what the point of these collisions are for (and to ignore the cases when §; = 5;), but it is
worth highlighting just how non-trivial this information is.

Corollary 10.7. Any generic group DLP solving algorithm runs in at least (\/p), and hence at best O(,/p).

48

Proof. We have an upper bound on the success probability of any such algorithm A. If we want A to succeed
with probability at least, say, 1/2 (or any number bounded away from 0), we see with simple algebra that

2 2p P
p<(m+2)?+2

Vp—2-2<m

m denotes the number of operations/requests we made to the oracle M. Hence if we want bounded-away-
from-0 probability of success, we need at least 2(/p) operations. O

1 2)2 1
1 (m+2?

10.5 Proof of Endomorphism Standard Form

Proposition 10.8 (Endomorphism standard form). Ewvery endomorphism can be written as alz,y) =
(r1i(z), ro(x)y) for rational functions ri(x),r2(x) € K[z].

Proof. Let R(z,y) be a rational function. Since y? = 23 + az +b, for all (z,y) € E(K), we can replace every

even power of y with a polynomial in . With this substitution, we will have at most one power of y in the
numerator and denominator:

~ pi(x) + p2(x)y

R(z,y) = ——————~

p3(x) + pa(x)y

with p;(x) polynomials. Rationalizing the denominator via p3(z)—p4(x)y and again replacing y? = z3+ax+b:

q1(z) + q2(x)y

R(z,y) = ()

(1)

for some polynomials g;(x).

Now let a(x,y) = (R1(z,y), R2(x,y)). Since a is a homomorphism and (z,—y) = —(z,y) in the group
E(K), we have a(z, —y) = a(—(z,y)) = —a(z,y) = (R (x,y), —R2(x,y)). Therefore, Ry (z, —y) = Ri(x,y)
and so if we write Ry in the form of (1), g2(x) = 0 in this case. Similarly Rs(x, —y) = —Ra(x,y) forcing
g1(xz) = 0. Thus, a(z,y) = (r1(x), ro(z)y) for rational polynomials rq,rs. O

10.6 Some Useful Algorithms
10.6.1 Extended Euclidean Algorithm

The Euclidean algorithm has been known for centuries to calculate the greatest common divisor of two
integers.

Consider we want to find ged(m,n). We can write m = ajn + r1 for 0 < r1 < n. Now note that if a
number d divides m,n, then by this equation d must also divide r; = m — a;n. Likewise, if d divides divides
n,ry it must also divide m. Hence it must be that ged(m,n) = ged(n,r1). We can repeat the division
algorithm again and write n = asry + ro for 0 < ro < r;. With similar reasoning, ged(n,r1) = ged(rq, r2).
We continue to iterate this:

m=a1n+nr 0<ri<n
n = asr1 + 2 0<ro<mr
1 =asgrg + 13 0<rz3<ry

Tn-3 = 0Gpn_-1Tn—2 +Tph_1 011 <7Th_2
Tn—2 = anTn—1

49

Since r; > ro > - -+ > 1,1 form a sequence of strictly decreasing and non-negative integers, this process must
eventually terminate with all r,,, = 0 after a certain point m in a finite number of steps. This termination
justifies this as an algorithm, eventually producing a result. By induction and extending the reasoning from
above, we have

ged(m,n) = ged(n,r) = ged(ry,72) = ged(ra, r3) = -+ = ged(rm—2,7m—1) = ged(rm—1,0) = 71
This is easy to implement, especially when we have access to modulo operators.
def euclidean_gcd(m, n):
if n == 0: return m
else: return gcd(n, m % n)
An important corollary for us in particular is Bézout’s Lemma:
Corollary 10.9 (Bézout’s Lemma). For all m,n € Z, there exists x,y € Z such that mz + ny = ged(m,n).

Proof. We take the same sequence of integers r; from before, and work our way up from the bottom, noting
that we can write r; in terms of r;_1,7;_s:

gcd(m, ’I’L) =Tm—1=Tm-3 — Om—-1Tm—-2 = (rm75 - am73rm74) - amfl(rmfél - am72rm73) =
While tedious, eventually we will only get terms of two initial values r_1; = m,rg = n. O
Now we can calculate inverses modulo n easily. Say ged(m,n) = 1 (else m would not have a multiplicative
inverse). By Bézout’s Lemma, there are z,y € Z such that mz + ny = 1. Reducing this modulo n, we have
max = 1 mod n, hence £ mod n is our multiplicative inverse of m. We sometimes call this process the extended
Euclidean algorithm. We will use a similar recursive call like in the normal Euclidean algorithm. Recall that

g = ged(m,n) = ged(n, m%n). Suppose we have found integers s,t¢ such that sn 4+ t¢(m%n) = g. Note
m%n =m — [m/n| - n. Hence

g =sn+t(m%n) =sn+tlm—|m/n|-n)=(s—t|m/n|)n+tm

Since we want mx + ny = 1, we compare coefficients and add to our recursion z = t,y = s — t|m/n].

def extended_gcd(m, n): # Given m,n return (gcd(m,n),z,y) with mx+ny=gcd(m,n)
if n ==
return (m, 1, 0) # If n=0, then gcd(m,n)=m and 1*m + O*n = gcd(m,n)
else:

gcd, s, t = extended_gcd(n, m % n) # Reduce with Euclidean algorithm
return (ged, t, s - t * (w//n))

def mod_inverse(m, n): # Find m~=1 mod n
gcd, x, y = extended_gcd(m, n) # mx + ny = ged(m,n)
if ged != 1:
return None # Inverse does mot ezxist
else:
return x % n #mzx = 1 mod n

10.6.2 Fast Exponent and Double-and-Add

Our discussion frequently references being able to efficiently calculate group operations in Z} and E(F,).
This is an integral component of using these groups in DLP, and as such what justifies being able to also break
them with Shor’s algorithm. Here we give a common algorithm that computes g” mod p and nP in O(logn)
group operations. The idea is to write n = byby b - - - by, in binary, and use repeated squaring/point doublings
to “hone in” on n faster than just repeated additions. The main property to calculate g™ = gb“20+b121+'”+b’“2k
used is that we can easily calculate squares iteratively: note (g2°)% = g>2" = ¢2'"".

50

def fast_expt(g, n): # Given g in group G, calculate g™n
if n == 0: return 1 #4970 = 1
output = 1 # Tracks output: initialize at 1, and add powers of 2 of g
while n > O: # Reading from least significant to most significant bit
if (n % 2 == 1): # Check if n odd t.e. current bit is 1,
g = g * output # and add factor of g~ (27k) to y if so
n=n-1
g=g=*g # Squaring/doubling of g to move onto next power of g~ (2°k)
n=n/2

return output

Here we let g be our group element, n the number of repeated operations, and * denote the group operation
(i.e. multiplication for Z5 or @ addition for E(F,)). There are other similar ways of implementing this
i.e. one can instead read from the most significant to least significant bit and do the y-additions before the
squarings, but the big picture remains the same: by looking at the binary expansion of n, we only need
[logyn] squarings with at most [log, n] additions/adjustments to y to store the calculation. This is as
opposed to needing n operations just computing g * g *---* g directly.

10.7 Existence of Finite Fields

We first outline some basic facts about fields (adapted from Part A: Rings and Modules and Part B: Galois
Theory).

Definition 10.10 (Field). A set K equipped with two commutative operations + and x is a field if (K, +)
and (K\ {0}, x) are groups with identity elements 0 and 1 respectively. Also, Va,b,c € K a x (b+¢) =
a X b+ a x ¢ (x distributes over +). For convenience, we often suppress x and write a X b as ab.

Example 10.11. R,Q,C,Z, = Z/pZ for prime p are all fields with the natural definitions of + and Xx.

n times
Definition 10.12 (Characteristic). The field characteristic Char(K) is the least integer n such that 1 + 1+ --- +1 =
0. If there is no such integer, the field is said to have characteristic 0.

n times

Remark 10.13. It is natural to want to shorthand n-1:=1+14---4+ 1. We may do this, but we must
differentiate between two notations of multiplication: x between field elements, and - between an integer
and a field element. Context will determine what type of multiplication we are referring to.

Proposition 10.14. Leta,b € K in a field. If ab= 10, thena =0 orb =0 (i.e. fields have no zero divisors).

Proof. Let a,b € K. WLOG, let a # 0 and say ab = 0. Multiply both sides by a=1: a=!(ab) = a=1(0) =
b=0. O

Proposition 10.15. The characteristic of a field is either prime or 0.

ab times a times b times
Proof. Say Char(K) = ab for positive integers a,b. Then 0 = 1+---+1 = (I1+---+1)(1+---+1).
a times b times
Fields have no zero divisors, so (1+---+1) = 0 or (1+---4+1) = 0, contradicting the minimality of
Char(K) = ab. O

Proposition 10.16. If Char(K) = p, then (a 4+ b)? = aP + bP for all a,b € K.

Proof. (a+b)P =3"_(?)a"b?~", and p | (?) for 0 < n < p and hence those terms reduce to 0 in K. O

o1

Corollary 10.17. If Char(K) = p, then for all k, (a + b)?" = a?" + b?"

Proof. We can show tkllis inductivlely. VVe1 showed it is true for k£ = 1, and say it holds for n — 1. Then
(a+b)P" = ((a+b)P" P =(a?" +¥" P =a" +b"". O

Theorem 10.18. There is a unique (up to isomorphism) finite field K of order q if and only if ¢ = p™ for
some prime p and integer n.

Proof. (=) Char(K) = p for some prime, since if Char(K) = 0 then K would be infinite (by generating new
elements repeatedly adding 1 to itself). Then note by considering all the elements generated by 1 under +,
K contains a (isomorphic) copy of Z, C K. The field axioms allow us to view K as a Z,-vector space (with
elements in K as vectors, and addition and multiplication being taken from the field), and since K is finite,
this vector space is certainly finite dimensional, say dimgz, (K) = n. Thus the number of elements in K can
be counted as the number of vectors in this space. There are p choices per coordinate, and n coordinates
identify an element in this vector space. Hence |K| = p™. O

The converse requires a bit more work. Let K[z] be the univariate polynomials in K.

Definition 10.19 (Trreducibility). Let f(z) € Klz]. f(z) is irreducible if f cannot be factored into non-
constant polynomials i.e. cannot write as f(x) = g(x)h(x) for g(x), h(z) € K[x] where deg(g),deg(h) > 1.

Example 10.20. 22 + 1 is irreducible over R, but factors as (z +i)(z — i) over C.
x

Proposition 10.21. Let K be a field, and consider the set K[z]/{f(z)) = {g(x) mod f(z) : g(z) € K[z]}. If
f(x) is irreducible, then K[x]/(f(x)) is a field. Further, if deg(f) = d, then K[z]/{f(x)) is a d-dimensional
K-vector space.

Proof. Addition and multiplication are taken as their normal polynomial variants, and addition can be
seen to make a group. The only non-trivial fact is showing the existence of multiplicative inverses. Let
g(x) € K[z]. Since ged(g(z), f(x)) = 1 (since f is irreducible), by Bezotit’s lemma for polynomials (over a
field), there are polynomials a(z), b(z) € K[z] such that a(z)f(x) + b(x)g(z) = 1. So b(z)g(x) = 1 mod f(z)
and hence b is the multiplicative inverse of g.

The second part follows from the division algorithm: let h(z) € K[z] and write it as h(z) = q(z) f(z)+7r(z)
where r(z) = 0 or deg(r) < deg(f) = d. Therefore h(z) = r(x) mod f(x). Hence every polynomial has a
representative of degree less than d i.e. is in the span of {1 mod f(z),r mod f(z),--- ,2% ' mod f(z)}. O

Definition 10.22 (Generating a field). Let be a subfield K C F and consider a subset S C F. Then K(S)
is the smallest subfield containing K and .S, and is the field generated by K and S.

Definition 10.23 (Splitting field). Let K be a field, and f(z) € K[z] be an irreducible polynomial. A field
F DO K is a splitting field of f if f decomposes entirely into linear factors, and F is the field generated by K
and the roots of f.

Proposition 10.24. Let f(x) € K[z]|. There exists a splitting field of f.

Proof. Factor f(z) = fi(z)fa(z) - fn(x) into its irreducible factors. If all the f; are linear, then K is a
splitting field and we’re done. So say f; is not linear. Since f; is irreducible, we can consider the field F} =
K[z]/(f1(x)). Here f1(z) has the root a; := z mod f1(z), since fi(z mod f1(z)) = fi(z) mod fi1(z) = 0. So
we can pull an additional (maybe more than 1) linear factor fi(z) = (x — a1)g(x). If all irreducible factors
are linear under K, we're done. Else, we pick another irreducible factor under K; (say g) and continue to
quotient Ko = K;/{(g(x)). At each step we reduce the degree of (at least) one irreducible factor, and hence
this process will eventually terminate. O

52

Definition 10.25 (Formal derivative). Let f(7) = ap 2" +a, 12" '+ --+ao € K[x]. The formal derivative
of fis D(f) = na,a" =t + (n — 1)a,_12" 2 + -+ + a;. Many of the same properties from calculus remains
like linearity and the product rule.

Proof of (<) of Theorem 10.18. We show existence of such a field and defer uniqueness to Part B: Galois
Theory. Consider f(x) = a?" — x € Z,[z], and the splitting field S of f(z) (which exists by Proposition
10.24). Let K= {z € S: f(z) = 0}. We will show |K| = p" and K is a subfield. Say f has a repeated root
o in S. Then D(f)(a) = 0, but this is not possible as D(f) = p"aP"~! — 1 = —1 since the characteristic of
S is p (since it contains Z,; hence p™ = 0). So f has p™ distinct roots and hence |K| = p™.

Note 1 € K, K is closed under multiplication and inversion (for non-zero solutions). So to show K is a
field, we just need to show it is an additive group. It’s clearly closed under additive inverses. Remember
that Char(S) = p and so (a + b)? = a? + bP for all a,b € S. Repeatedly raising this expression to p nets
us that (a + b)?" = a?" + b?". Hence if a,b € K, then a + b € K since f(a+b) = (a +b)?" — (a +b) =
a?" —a+b"" —b= f(a)+ f(b) = 0. Hence K is a field of order p™. O

As noted, by the uniqueness up to isomorphism of finite fields, we denote the finite field of order ¢ by F,
(note F, = Z, for prime p). This theorem will be especially useful as it allows us to explicitly control how
big of a finite field we want to work in: we can pick any prime power, and there is a field of that size we can
use.

Remark 10.26. The above shows existence of fields of any prime power order, but not necessarily how to
construct them. If we want a field of order p?, we often try to work in F,[x]/{f(z)) where f is irreducible and
deg(f) = d (this generates a F,-vector space of dimension d by Proposition 10.21). Constructing irreducible
polynomials is not straightforward, but we have tests to check if polynomials are irreducible. So we might
just give a guess and just test for irreducibility. For example, when constructing fields of order 2¢ via
Fo[z]/(f(z)), a common choice is f(z) = 2% + x¥ + 1 with lowest k possible [40].

Example 10.27 (Binary fields). The polynomial f(z) = 2% + 2 + 1 is irreducible in Fy (since it is a cubic
and has no roots), so we can construct the field Fg = Fo[z]/{x® 4+ 2 + 1) of order 23. Building elements from
the basis {1, 2, 2%}, we see that the field has elements {0, 1,2,z + 1,2% 2% + z,2% + 1,2? + 2 + 1} (recalling
we are also working in characteristic 2, so we reduce coefficients modulo 2).

Remark 10.28 (Simple field extensions). The above method of quotienting out by an irreducible polynomial
gives a general method of identifying fields that is quite useful in field theory. In particular, say we have a
field F and an element « in some ambient field K O F. Now consider the field homomorphism ¢ : Flz] — F[a]
given by the evaluation map f(x) — f(«) (that is we’re mapping polynomials in to polynomial expressions
in «). If we take the minimal polynomial m, r(z) of o over F, then f(a) =0 <= mar(z) | f(z) <=
f(z) € (mar(x)). Hence ker ¢ = (mq p(x)). Clearly Im ¢ = Fla], so by the First Isomorphism Theorem (for
Rings), we have F[z]/(mqr(z)) = Fla] given by x mod m p(z) — «. However, since the LHS is actually a
field since m, r(z) is irreducible as we discussed in Proposition 10.21, it is actually the case that Fla] = F(«)
and is the field that is generated by F and « (for a more sophisticated view, mq r(x) being irreducible means
(mar(z)) is a maximal ideal and hence the quotient ring is a field; also hence for any algebraic element
its polynomial ring is actually a field). The idea is that we’re adjoining the root a of m, 7(z) as the coset
2 mod mq () (see Proposition 10.24 and creating splitting fields).

Now why does this matter? Well, as we said before, if deg(mar(x)) = d, then Flx]/(mqr(z)) is a d-
dimensional F-vector space with basis {1,z,--- ,29~!}. By our isomorphism, this means that F(a) is also a
d-dimensional F-vector space with basis given by {1, «,---,a%"1} (the idea is that if any higher power of a
appears in an expression, we can reduce it with the relation of mq r(z), and that’s what our isomorphism
confirms). In field theory, we denote the dimension of K as an F-vector space dimpK = [K : F] and call it
the degree of the field extension K/F. So in particular we have shown that [F(«) : F] = deg(mqr(z)). This
is a key relation that forms the fundamental ideas for much of field and Galois theory. We have already seen
how useful this interchange of fields and vector spaces can be with identifying finite fields and prime power
orders.

Example 10.29. R[z]/(z% + 1) 2 R(4) is a 2-dimensional R-vector space we know as C.

53

10.8 Some Comments on Shor’s Algorithm
10.8.1 The Controlled-U Gate in Quantum Phase Estimation

It might be unclear what exactly our Ucontro1 actually looks like. Here is what the full matrix looks like.

_ [bin(0)) [v) [bin(1))|v) [bin(2))[v) [bin(3))[v) .- [bin(j))|v) -+ |pin(2" —1))|v)

I 0 0 0 0 0 Ibin(0)) |v)
0 Lo 0 0 0 0 in(1

0 U [bin(1)) v)
0 0 é UQQ 0 0 0 bin(2)) |v)
0 0 0 é U93 0 0 Ibin(3)) [v)

Ucontrol = i
I . 0
0 0 0 0 L A T 0 bin(j)) [v)
1 . 0

0 0 0 0 0 o g | i@ - D))

As stated, this is not what the matrix would look like in practice, however. In particular, we would break
this up into a series of “controlled-U?” gates that are applied according to the state of |bin(k)). This would
only require k total small matrices as opposed to this big one that has all 2¥ powers with superposition
taking care of the rest.

10.8.2 A Comment on the Success of Shor’s Algorithm

The success probability of Shor’s algorithm makes some heuristic sense to be of the order at least O(1/7?)
at least for the reason that is around the probability of two numbers being coprime: if we “randomly” pick
any two integers, the probability they are both divisible by a prime p is 1/p?, so the probability at least one
of them is not divisible by p is 1 — 1/p?. Extending this to all the primes,

-1 -1

()= (I) [se) -(Se) -2

p primes p primes p primes k=0

The notion of “random integers” and extending this probability over all primes can be formalized, but this
gives a nice heuristic argument for the probability of coprimality and hence the probability of recovering a
useful qubit state to find our period.

10.8.3 Deriving the Fourier Basis for Hidden Subgroups

To save time in the general algorithm, we describe a special case of the Fourier transform for hidden sub-
groups. Since we are working in cyclic groups, we will use additive notation for the groups.

Let G be a finite abelian group and f a function that hides the subgroup H < G. Let f(xg) =
\/@ >_gec F(9)xe(g) be the Fourier transform of f given above, so we can write f(g) = \/@ Y e FOxe(g)
(note that is the actual inverse: since we are working in a finite group, say of order n, then x(g)" = x(¢") =

Xx(1) =1 hence x(g) for all g is a root of unity. In particular, x(g) = 1/x(g)). Now, rewrite f(¢) in terms of
cosets:

\/ﬁZf)xe(g \ﬁ > D flg+h)xeg+h)

geG geG/H he H

54

f is constant on cosets so f(g+ h) = f(g), and ¢ is a homomorphism, so:

(o \ﬁ DY flag+h)xelg+h) = m > xe@)f(9) D xe(h)

g€G/H he H geG/H heH

We can simplify this: note if £ € H, then x¢(h) = 1s0 >, .y xe(h) = |H|. If £ ¢ H*, then 3ho € H such
that x¢(h) # 1. But note, since h — h + hq is surjective,

> xelh) =3 xelho +h) = xe(ho) D xelh)

heH heH heH

But x¢(ho) # 1, so it must be that » ,_, xe(h) = 0 (this is analogous to conditions on evaluating
Zé\:)l e?™/N) . So based on these cases, and renormalizing (so later we have well-defined quantum states):

=] . F[L
A =Y pxe(9)flg) ifle

[G] £LugeG/
f() \/E gEEG/H X/ (g) h§€ : Xg(h) {0 if ¢ ¢ H+

(This is the correct normalization. Consider the homomorphism ¢ : G — ﬁAvia X+ X|g. Then ker ¢ = H+,
so by First Isomorphism Theorem, G/H* = H. Finish with G & G and H = H.) Hence we can write the

inverse as
flg § xe(g

EGHi

10.8.4 Another Approach to the Generic HSP Algorithm

Below is the “measurement approach” to solving the generic HSP. Our original approach took the simpli-
fication by realizing the Fourier basis above, but this one instead measures an additional time to highlight
where exactly we are extracting information from the hidden subgroup. Here, instead of just measuring the
first measure, we also measure the second register to project onto the entangled coordinates of the coset.

1. Initialize two registers |0) |0).

2. Apply the QFT to the first register to create a uniform superposition over the group elements:

|0)

\/EZW

geG

3. Apply f to the second register in accordance to the first register:

Zlg Z\g | f(g

qEG qEG

4. Measure the second register, fixing the output to some |f(go)):

\/EZ\Q |f(g \/EZ\Q |f(90)) Z\QOJF) 1f(90))

geG geG h€H

Measuring | f(g)) — |f(go)) gives us some information on the potential state of the first register |g) (this
is a result of the fact we have entangled the first and second registers by applying f). In particular, if
we see |f(go)), we know that the first register must be an element from gy + H since f is constant on
cosets. We do not know what element this is, but it can be uniformly any of them, so we end up with
the reduced coset superposition on the right. (At this point, we no longer need the second register for
it has given us the coset information we need.)

55

5. Apply the QFT to the first register. By linearity and properties of characters:

Z |90 + h) |H Z \/F ngo-‘rh

heH heH geq

\/W > Xaol9) D xul9) l9)

geG heH

0 g h
%IHHG ;E;;Xg g (};x ()> lg)

S >~ Xo(90) |9)
\/|H\|G P

Z Xg(90) 9)

gEHl

6. Measure the first register to obtain a random g € H~+, which gives information on H.

7. Repeat steps 1-6 until H can be determined via the linear relations of H.

The last few steps are quite similar to our original approach with the rewritten Fourier basis, and by the
end that is precisely what we obtained. We see some familiar and new properties of characters being used.
The two new properties we used were X g4+1(9) = Xgo(9)Xn(9) and xn(g) = x4(h). These are both best seen
by looking at the explicit exponential representation for the characters when treating G as its isomorphic
(product of) cyclic group(s). That is how we explained the isomorphism G 2 G to begin with, and makes
the symmetry clear. We also used the characterization from before in evaluating » -, ., x4(h).

56

	Introduction
	Crediting and Sources

	Cryptography Preliminaries
	Diffie-Hellman and the Key Distribution Problem
	DLP and Security Assumptions
	Group Sizes and Parameter Selection

	Classic Elliptic Curve Cryptography
	Mathematical Preliminaries
	Elliptic Curves and the Group Law
	Group Structure and Hasse's Bound
	The Nechaev-Shoup Theorem and Confidence in ECDLP
	Security and Implementation Analysis
	Anomalous Curves
	Supersingular Curves
	Invalid Point Attacks
	Comparison to Other Classic Cryptographic Schemes

	Introduction to Quantum Computing
	What is Classical Computing?
	Key Differences of Quantum and Classical Computing
	Brief Aside on Qubits (Mathematical Approach)
	So What? Quantum Parallelism is What

	A Note On Quantum Time Complexity and Security
	Is This Viable?

	Quantum Computing Threat
	Shor's Algorithm
	Why Do We Need Quantum At All?

	The Quantum Fourier Transform
	Phase Estimation
	Phase Estimation Accuracy

	Quantum Order-Finding
	Quantum DLP and the Hidden Subgroup Problem
	QFT on Finite Abelian Groups

	Time Complexity Analysis
	Impact on Classical ECC and Immediate Timeline

	Post-Quantum Elliptic-Curve Cryptography
	Isogeny Graphs
	Additional Mathematical Background
	Supersingular Elliptic Curves

	SIDH/SIKE Protocols
	Unfortunate Recent Developments

	Other Post-Quantum Solutions and Further Directions
	Lattice-Based Cryptography
	Hash-Based Cryptography
	Efficiency and Security Comparisons

	Conclusion
	References
	Appendix
	Diffie-Hellman Visualization
	Understanding the Pohlig-Hellman Algorithm
	Some Notes on DLP Algorithms
	Baby-Step Giant-Step: A General DLP Algorithm
	Using Zp, and the Weakness of Factorization
	Index Calculus Attack
	Analysis for Index Calculus
	Homogeneous Coordinates for ECDLP

	Understanding The Nechaev-Shoup Theorem
	Proof of Endomorphism Standard Form
	Some Useful Algorithms
	Extended Euclidean Algorithm
	Fast Exponent and Double-and-Add

	Existence of Finite Fields
	Some Comments on Shor's Algorithm
	The Controlled-U Gate in Quantum Phase Estimation
	A Comment on the Success of Shor's Algorithm
	Deriving the Fourier Basis for Hidden Subgroups
	Another Approach to the Generic HSP Algorithm

