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A Challenge with Secrecy

Alice Bob
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A Challenge with Secrecy

Alice Bob

EK (m) = c DK (c) = m

Shared Key K?

Eve

How do Alice and Bob
agree on a secret key?

c

? ?
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The Diffie-Hellman Key Exchange
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The Diffie-Hellman Key Exchange

(G , ◦), generator g

Alice Bob

a b

A = g a B = gb

S = Ba = gba S = Ab = g ab

Alice’s Domain Bob’s Domain

Both compute identical shared secret: S = g ab = gba
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The Discrete Logarithm Problem

• Attackers can still hear encoded information A = ga,B = gb sent over the channel
• If they can somehow recover either a or b, they could then can recover S = Ab = Ba

The Discrete Logarithm Problem

Given a group G = ⟨g⟩, an element h = g x , can we recover logg h = x efficiently?

• If the answer is yes, Alice and Bob are in trouble

Examples

Solving DLP in (Zn,+) is easy: we want to solve xg ≡ h mod n. So we want to find
x = g−1h mod n, and we can find g−1 mod n in O((log n)2) with the Euclidean algorithm
if gcd(g , n) = 1. Else there is not a solution.

Remark

Factoring is another thought-to-be-hard problem: it is easy to multiply pq = N, but
factoring N into p, q is hard.
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Classic Elliptic Curve Cryptography
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Introduction to Elliptic Curves

Definition: Elliptic Curve (Weierstrass Form)

Let K be a field, and a, b, c ∈ K. An elliptic curve over K, denoted E/K, is an equation
of one of the following forms based on Char(K):

Char(K) = 2 : y2 + cy = x3 + ax + b

Char(K) = 3 : y2 = x3 + ax2 + bx + c

Char(K) > 3 : y2 = x3 + ax + b

Let E (K) = {(x , y) ∈ K2 : (x , y) satisfy E} ∪ {∞} where we include an element ∞
called the “point at infinity”.

• For convenience, we assume Char(K) > 3, but all methods are easily adapted.
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Group Law for Elliptic Curves

• There is a nice geometric way to define a group over E (K).
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Group Law for Elliptic Curves

The Group (E (K),⊕)

Let P = (xP , yP),Q = (xQ , yQ).

• Identity: P ⊕∞ = ∞⊕ P = P

• Inverses: −P = (xP ,−yP). If P = ∞, then −P = ∞.

• Addition: If P ̸= Q, define

P ⊕ Q =

((
yQ − yP
xQ − xP

)2

− xP − xQ ,−
(
yQ − yP
xQ − xP

(xR − xP) + yP

))

If P = Q, let

P ⊕ P =

((
3x2P + a

2yP

)2

− 2xP ,−
(
3x2P + a

2yP
(xR − xP) + yP

))
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The Quantum Threat and Shor’s Algorithm
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The Quantum Threat and Q-Day

• Elliptic curves promise an efficient speedup of certain cryptographic schemes

• However, we have assumed a very simple model of computation

• That is not what the future necessarily holds

Shor’s Algorithm

There is an algorithm* that solves DLP and factoring in O((log n)3).

*However, it is a quantum algorithm
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Introduction to Quantum Computing

• Classical bits: are either 0 or 1

• Quantum bits (a.k.a. qubits): infinitely many in-between states of 0 and 1

• Formally, qubits are vectors |v⟩ = α |0⟩+ β |1⟩ for α, β ∈ C
• Upon measuring |v⟩, we get |0⟩ with probability |α|2 and |1⟩ with probability |β|2

• When α, β ̸= 0, say |v⟩ is in superposition

Remark

This is the key to almost all of quantum mechanics! Working in this modified probability
space implies most quantum results theoretically.

• Unitary maps act as logic gates; fundamental operations.
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Quantum Parallelism

• So what?

• Let f : {0, 1} → {0, 1} be the function f (x) = 1− x

• Consider unitary Uf : |x⟩ → |f (x)⟩
• Look at the following:

Uf

(
1√
2

(
|0⟩+ |1⟩

))
=

1√
2

(
|f (0)⟩+ |f (1)⟩

)
• With one use of Uf i.e. one use of f , we got two values of f !

• Extends: one use of Uf can give
∑

|n⟩ |f (n)⟩

19 / 34



Example Problem

Order-Finding Problem

Given gcd(a,N) = 1, can we find minimal r such that ar = 1 mod N?

• Classically: no fast solution

• Quantum: yes with parallelism
∑

|t⟩ |at mod N⟩

Remark

Shor’s algorithm is a reduction of factoring to order-finding. Similarly, it reduces DLP to a
similar period-finding problem.
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A Post-Quantum Solution
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Isogeny-Based Cryptography

• One major direction being explored is with isogeny-graphs

• The suggested problem: find a path in a graph without already being given the edges

• Nodes = Elliptic groups up to isomorphism

• Edges = Homomorphisms
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A Bit More on Isogenies

• Fancy word for (rational) homomorphism ϕ : E1(K) → E2(K)

• Elliptic curves as groups endow lots of structure onto isogenies

Proposition

All isogenies are surjective.

Theorem

For every finite subgroup G ≤ E (K), there exists a unique elliptic curve E/G and isogeny
ϕ : E → E/G with ker ϕ = G .

Examples
• The multiplication-by-n map [n](P) = nP is an endomorphism.

• (Frobenius map) If Char(K) = p, then Φp(x , y) = (xp, yp) is an isogeny between
E : y2 = x3 + ax + b and E (p) : y2 = x3 + apx + bp.
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Supersingular Isogeny Diffie-Hellman (SIDH)

• As the name suggests, this is a generalization of classical Diffie-Hellman using highly
connected isogeny graph

• Consider all isomorphism classes of over field of characteristic p

• Idea: Alice and Bob take random walks over the graph with different degree
isogenies, and arrive at a common elliptic curve.

24 / 34



An Example

Costello, C. (2019). Supersingular isogeny key exchange for beginners. Cryptology ePrint Archive, Report 2019/1321, Figures 1,7,8,9,10.
https://eprint.iacr.org/2019/1321.pdf 25 / 34



Alice’s Public Key
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Bob’s Public Key
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Alice’s Shared Computation
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Bob’s Shared Computation
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Set Up

• Public:
• Primes p, peaa , pebb
• Initial curve E/Fp2

• Torsion subgroups E [peaa ] = ⟨Pa,Qa⟩ and E [pebb ] = ⟨Pb,Qb⟩
• Alice:

• Secret: A = Pa + [ma]Qa, α : E → E/⟨A⟩
• Exchange: {E/⟨A⟩, α(Pb), α(Qb)}

• Bob:
• Secret: B = Pb + [mb]Qb, β : E → E/⟨B⟩
• Exchange: {E/⟨B⟩, β(Pa), β(Qa)}

• Shared Secret: Curve (E/⟨A⟩)/⟨α(B)⟩ ∼= E/⟨A,B⟩ ∼= (E/⟨B⟩)/⟨β(A)⟩
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More on SIDH

Isogeny Computation Problem

Given two elliptic curves E ,E ′ over a finite field that are isogenous of degree d , find an
isogeny ϕ : E → E ′ with deg(ϕ) = d .

• Like DLP and DH, solving ICP solves SIDH

• Thought to be hard in general for quantum computers

• Unfortunately, this does not really matter for SIDH

• SIDH was broken with a classical attack in July 2022 exploiting the auxiliary points
{α(Pb), α(Qb)} in the exchange.

31 / 34



More on SIDH

Isogeny Computation Problem

Given two elliptic curves E ,E ′ over a finite field that are isogenous of degree d , find an
isogeny ϕ : E → E ′ with deg(ϕ) = d .

• Like DLP and DH, solving ICP solves SIDH

• Thought to be hard in general for quantum computers

• Unfortunately, this does not really matter for SIDH

• SIDH was broken with a classical attack in July 2022 exploiting the auxiliary points
{α(Pb), α(Qb)} in the exchange.

31 / 34



Conclusion

• Elliptic curves bridge the abstract nature of geometry with computationally nice
algebra

• Shor’s algorithm and Q-Day hold some weight, but we still have some time

• Good considering we still have some techniques to iron out
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Shor’s Algorithm

We want to factor integer N.

1. Pick random a, and compute gcd(a,N) = d .

2. If d > 1, done!

3. If d = 1, then a ∈ Z×
N i.e. ∃r minimal such that ar = 1 mod N .

4. If r is even, then N | ar − 1 = (ar/2 − 1)(ar/2 + 1).

5. N ∤ ar/2 − 1 by choice of r . So if gcd(N, ar/2 − 1) > 1, done!

6. If gcd(N, ar/2 − 1) = 1, then gcd(N, ar/2 + 1) = N, so try again.
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Generalized Shor’s Algorithm

1. Initialize two registers |0⟩ |0⟩.
2. Uniform superposition with QFT:

|0⟩ |0⟩ 7→ 1√
|G |

∑
g∈G

|g⟩ |0⟩

3. Apply f to the second register with Uf :

1√
|G |

∑
g∈G

|g⟩ |0⟩ 7→ 1√
|G |

∑
g∈G

|g⟩ |f (g)⟩ = 1√
|G |

∑
g∈G

|g⟩

√ |H|
|G |

∑
ℓ∈H⊥

χℓ(g) |f̂ (ℓ)⟩


4. Apply QFT−1 to first register:√

|H|
|G |

∑
ℓ∈H⊥

 1√
|G |

∑
g∈G

χℓ(g) |g⟩

 |f̂ (ℓ)⟩ QFT−1

−−−→

√
|H|
|G |

∑
ℓ∈H⊥

|ℓ⟩ |f̂ (ℓ)⟩

5. Measure the first register to obtain a random ℓ ∈ H⊥, which gives information on H.
6. Repeat steps 1–6 until H can be determined via the linear relations of H⊥. 34 / 34
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