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Cryptography Basics and The Discrete Logarithm Problem
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A Challenge with Secrecy

Bob
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A Challenge with Secrecy

How do Alice and Bob
agree on a secret key?

} Bob

6/34



The Diffie-Hellman Key Exchange

(G, o), generator g

Alice’s Domain Bob’s Domain
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The Diffie-Hellman Key Exchange

(G, o), generator g

Alice’s Domain Bob’s Domain

[Both compute identical shared secret: S = g?* = gba]
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The Discrete Logarithm Problem

e Attackers can still hear encoded information A = g2, B = g? sent over the channel
® |f they can somehow recover either a or b, they could then can recover S = AP = B?

The Discrete Logarithm Problem

Given a group G = (g), an element h = g*, can we recover log, h = x efficiently?

® |f the answer is yes, Alice and Bob are in trouble

Solving DLP in (Z,,+) is easy: we want to solve xg = h mod n. So we want to find
x = g thmod n, and we can find g=! mod n in O((log n)?) with the Euclidean algorithm
if gcd(g, n) = 1. Else there is not a solution.

Factoring is another thought-to-be-hard problem: it is easy to multiply pg = N, but
factoring N into p, g is hard.
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Classic Elliptic Curve Cryptography
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Introduction to Elliptic Curves

Definition: Elliptic Curve (Weierstrass Form)

Let K be a field, and a, b, c € K. An elliptic curve over K, denoted E/K, is an equation
of one of the following forms based on Char(K):

Char(K) =2: y?+cy=x3+ax+b
Char(K)=3: y?>=x3+ax®+bx+c
Char(K) >3: y?=x3+ax+b

Let E(K) = {(x,y) € K2 : (x,y) satisfy E} U {co} where we include an element oo
called the “point at infinity"”.

® For convenience, we assume Char(K) > 3, but all methods are easily adapted.
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Group Law for Elliptic Curves

® There is a nice geometric way to define a group over E(K).

y2=x3—4x+2 \
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Group Law for Elliptic Curves

The Group (E(K), ®)

Let P = (xp, yp), Q = (X0, ¥Q)-
® |dentity: PPoo=c0oPdP P =P
® Inverses: —P = (xp, —yp). If P =00, then —P = oc.
e Addition: If P # @, define

XQ — Xp

2
P& Q: <<yle>> — Xp — XQ, — <M(XR_XP)+}/P)>

If P=Q, let

33 2 33
Pap— (xp—i—a) _2XP’_<xp+a
2yp 2yp

(xr — xp) + YP>>
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The Quantum Threat and Shor's Algorithm
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The Quantum Threat and Q-Day

® Elliptic curves promise an efficient speedup of certain cryptographic schemes
® However, we have assumed a very simple model of computation

® That is not what the future necessarily holds

Shor's Algorithm
There is an algorithm* that solves DLP and factoring in O((log n)3).
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The Quantum Threat and Q-Day

® Elliptic curves promise an efficient speedup of certain cryptographic schemes
® However, we have assumed a very simple model of computation

® That is not what the future necessarily holds

Shor's Algorithm
There is an algorithm* that solves DLP and factoring in O((log n)3).

*However, it is a quantum algorithm

17/34



Introduction to Quantum Computing

Classical bits: are either 0 or 1

Quantum bits (a.k.a. qubits): infinitely many in-between states of 0 and 1
Formally, qubits are vectors |v) = «|0) + §]1) for a, 5 € C

e Upon measuring |v), we get |0) with probability ||? and |1) with probability |3|?

When «, 8 # 0, say |v) is in superposition

This is the key to almost all of quantum mechanics! Working in this modified probability
space implies most quantum results theoretically.

e Unitary maps act as logic gates; fundamental operations.
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Quantum Parallelism

® So what?
Let f:{0,1} — {0,1} be the function f(x) =1 — x
Consider unitary Ur : |x) — |f(x))

Look at the following:

e (5 (191 +1m) ) = J5 (1rco + I

e With one use of Ur i.e. one use of f, we got two values of f!

Extends: one use of Ur can give > |n) |f(n))
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Example Problem

Order-Finding Problem

Given gcd(a, N) = 1, can we find minimal r such that a" = 1 mod N?

e Classically: no fast solution

® Quantum: yes with parallelism > |t) |at mod N)

Shor's algorithm is a reduction of factoring to order-finding. Similarly, it reduces DLP to a
similar period-finding problem.
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A Post-Quantum Solution
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Isogeny-Based Cryptography

One major direction being explored is with isogeny-graphs

The suggested problem: find a path in a graph without already being given the edges

Nodes = Elliptic groups up to isomorphism

Edges = Homomorphisms

22/34



A Bit More on Isogenies

® Fancy word for (rational) homomorphism ¢ : E;(K) — E»(K)
e FElliptic curves as groups endow lots of structure onto isogenies
Proposition

All isogenies are surjective.

For every finite subgroup G < E(K), there exists a unique elliptic curve E/G and isogeny
¢ E— E/G with ker¢p = G.

® The multiplication-by-n map [n](P) = nP is an endomorphism.

® (Frobenius map) If Char(K) = p, then ®,(x,y) = (x?, y?) is an isogeny between
E:y?=x3+ax+band EP) : y2 = x3 4 aPx + bP.
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Supersingular Isogeny Diffie-Hellman (SIDH)

® As the name suggests, this is a generalization of classical Diffie-Hellman using highly
connected isogeny graph

e Consider all isomorphism classes of over field of characteristic p

® |dea: Alice and Bob take random walks over the graph with different degree
isogenies, and arrive at a common elliptic curve.
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An Example

364i + 304

Costello, C. (2019). Supersingular isogeny key exchange for beginners. Cryptology ePrint Archive, Report 2019/1321, Figures 1,7,8,9,10.
https://eprint.iacr.org/2019/1321.pdf

25 /34



306i + 426

209i + 118

87i+ 190

364i + 304

Alice's Public Key

389i + 141
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364i+ 304

306i + 426

344i + 190

209i + 118

389i + 141
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Alice's Shared Computation

87i + 190
1 ]
344i + 190 306i+426
.@ 209i + 118
3
= :
389i + 141
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Bob's Shared Computation

OO

364i + 304
DO (=) ; aD
24214190 306i + 426
.E 209i + 118
¢

: o
389i + 141
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Public:
* Primes p, p&, py®
® Initial curve E/F
® Torsion subgroups E[p$?] = (P, Qa) and E[p;*] = (Ps, Qb)
Alice:
® Secret: A=P,+[m,]Q,, a: E— E/(A)
® Exchange: {E/(A), a(Ps),a(Qp)}
* Bob:
® Secret: B= P, + [my]Qp, 8: E — E/(B)
® Exchange: {E/(B),3(P.), 5(Q.)}
Shared Secret: Curve (E/(A))/(a(B)) = E/(A, B) = (E/(B))/{B(A))
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More on SIDH

Isogeny Computation Problem

Given two elliptic curves E, E’ over a finite field that are isogenous of degree d, find an
isogeny ¢ : E — E’ with deg(¢) = d.

® Like DLP and DH, solving ICP solves SIDH

® Thought to be hard in general for quantum computers
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More on SIDH

Isogeny Computation Problem

Given two elliptic curves E, E’ over a finite field that are isogenous of degree d, find an
isogeny ¢ : E — E’ with deg(¢) = d.

Like DLP and DH, solving ICP solves SIDH

Thought to be hard in general for quantum computers

Unfortunately, this does not really matter for SIDH

SIDH was broken with a classical attack in July 2022 exploiting the auxiliary points
{a(Pp),a(Qp)} in the exchange.
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Conclusion

e Elliptic curves bridge the abstract nature of geometry with computationally nice
algebra
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Conclusion

e Elliptic curves bridge the abstract nature of geometry with computationally nice
algebra
® Shor's algorithm and Q-Day hold some weight, but we still have some time

® Good considering we still have some techniques to iron out
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Shor's Algorithm

We want to factor integer N.

1.

e

Pick random a, and compute gcd(a, N) = d.

If d > 1, donel

If d =1, then a € Zy, i.e. 3r minimal such that a” = 1 mod N .
If ris even, then N | a" — 1= (a'/2 —1)(a"/? 4+ 1).

Nt a"/? — 1 by choice of r. So if gcd(N,a"/? — 1) > 1, done!

If gcd(N, a"/2 — 1) = 1, then gcd(N, a’/2 + 1) = N, so try again.
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Generalized Shor's Algorithm

1. Initialize two registers |0) |0).
2. Uniform superposition with QFT:

0)10) =+ —— 3" Ig) [0)

3. Apply f to the second register with Us:

T B0 = =S e = = T le) ||/ g 3 @ )

geG gceG

4. Apply QFT™1 to first register:

rr-1 [ |H] 2
g)le) | 1F(0)) = [ = ST 10 1f)
EPA bRl ol 2

5. Measure the first register to obtain a random ¢ € H', which gives information on H.

6. Repeat steps 1-6 until H can be determined via the linear relations of H+. 34/34
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